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I. В В Е Д Е Н И Е

Одним из важнейших вопросов современной теоретической органи-
ческой химии является проблема участия в реакциях органических со-
единений не только ковалентных молекул, но и различных ионных ин-
термедиатов, свободных ионов и ионных пар различного типа. Эти ча-
стицы в реакциях существенно изменяют реакционную способность
субстрата и механизм реакции. Участие карбониевых ионов в реакциях
нуклеофильного замещения основано на доказательстве механизма мо-
номолекулярного замещения (5W1), который был предложен впервые
Ингольдом с сотр. \ и в классической формулировке предполагает обра-
зование свободного иона в лимитирующей стадии реакции в стационар-
ной концентрации. Впоследствии были изучены реакции нуклеофиль-
ного замещения с участием стабильных карбониевых ионов. В настоя-
щее время органическая химия накопила обширный материал о роли
и реакционной способности свободных ионов (карбониевых ионов2 и
карбанионов3·4, однако последнее десятилетие характеризуется осо-
бым вниманием к тому факту, что эти частицы часто существуют в рас-
творе и принимают участие в реакции не в свободном состоянии, а в
виде ассоциатов со своим противоионом. Понятие «ионная пара», хо-
рошо известное в химии электролитов5, было введено в органическую
химию Уинстейном (и предложено ему Грюнвальдом).

Еще в 1960 г. Уинстейн писал; «Важно различать ионизацию и дис-
социацию и рассматривать роль различных ионных интермедиатов,
представляющих различные стадии ионизации — диссоциации»6. Идея
существования ионных интермедиатов в реакциях нуклеофильного за-
мещения, отличных от карбониевого иона, возникла у Уинстейна после
установления факта, что сольволиз в аллильных системах сопровожда-
ется внутримолекулярной перегруппировкой исходного соединения7.
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Доказательство существования таких ионных интермедиатов, которые
было предложено называть ионными парами (внутренними и внешни-
ми, а в современной литературе контактными, или тесными, и сольват-
но-разделенными, или рыхлыми), было получено в результате большого ψ
числа работ по изучению не только аллильных изомеризации, но так-
же перегруппировок в системах, содержащих β-арилэтильный фраг-
мент, при сопоставлении скоростей сольволиза, рацемизации, изотопно-
го обмена в системах типа ArCHXR и рандомизации в эфирах типа
ROC18OAr, а также на основании изучения солевых эффектов.

На основании этих данных была сформулирована концепция8, со-
гласно которой ковалентное соединение диссоциирует на свободные
ионы постадийно через стадии образования по крайней мере двух ти-
пов ионных пар, возврат из которых может приводить к изомеризации
катионного или анионного фрагмента молекулы

RX ^ R+X- # R+ | Х - ^ R+ + X-

R'+X'- R'+ЦХ'-

Предполагалось, что реакции типа 5N1 могут происходить не только
через свободные ионы, но и с участием сольватно-разделенных ионных
пар.

В последние годы делается попытка доказать, что ионные пары кон-
тактного типа могут принимать участие в реакциях 5„2-типа неактиви-
рованных вторичных (и даже первичных) субстратов, хотя попытка
предложить «унифицированный» механизм нуклеофильного замещения
наталкивается на серьезные трудности. Однако сам подход, согласно
которому в зависимости от структуры и условий субстрат принимает
участие в реакции в различных формах и все различия в механизмах ,»,
определяются соотношением скоростей отдельных стадий, кажется весь- *
ма заманчивым.

Итак, доказательства существования в растворе наряду с карбоние-
выми ионами ионных пар различного типа основаны на анализе кине-
тических и стереохимических данных.

Совершенно иная ситуация сложилась при рассмотрении проблемы
существования ионных пар в химии карбанионов. В этой бурно разви-
вающейся в последние годы области благодаря физическим исследова-
ниям получены прямые доказательства существования в растворах со-
лей карбанионов и анион-радикалов ионных пар различного типа9. Осо-
бое значение имеют работы Вейсмана10, впервые в 1958 г. получившего
физические доказательства существования ионных пар при изучении
спектров ЭПР солей анион-радикалов и дальнейшие работы в этой об-
ласти, показавшие существование двух типов ионных пар "- 1 3, а также
работы Смида с сотр. 14~16, доказавших существование контактных и
сольватно-разделенных ионных пар изучением спектров солей карбани-
онов. Именно работы Смида привлекли особое внимание химиков-орга-
ников к этой проблеме. Проделанные к настоящему времени исследова--
ния позволили не только идентифицировать разного типа ионные пары,
но установить их физические свойства, энергетику, сольватацию, дина-
мику ".

Некоторая парадоксальность ситуации, сложившейся на сегодняш-
ний день, состоит в том, что ионные пары карбанионов хорошо изучены
различными физико-химическими методами, но очень немного извест-
но о их реакционной способности в реакциях электрофильного заме-
щения 18-20, а ионные пары карбониевых ионов широко привлекаются
для объяснения закономерностей нуклеофильного замещения, но объ- к
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сктивные данные об их структуре отсутствуют. Однако огромные успе-
хи, достигнутые в исследовании этой проблемы в химии карбанионов,
привели к тому, что достижения области, связанной с карбониевыми
ионами, оказались в тени, хотя сама концепция ионных пар была сфор-
мулирована Уинстейном именно в применении к области карбониевых
ионов и нуклеофильного замещения. В этом обзоре мы рассмотрим до-
казательства существования ионов и ионных пар в реакциях 5к-типа и
роль ионных пар в нуклеофильном моно- и бимолекулярном заме-
щении.

И. ИОНЫ И ИОННЫЕ ПАРЫ MX В РЕАКЦИЯХ ТИПА SN 2

Реакция с участием ионных нуклеофильных агентов является одной
из важнейших как в практическом, так и в теоретическом отношении
в ряду других реакций нуклеофильного замещения. Особое место сре-
ди них занимает обмен галогенидами (RX—Х~), известный как обмен
Финкельштейна *. Реакционная способность анионов, их нуклеофиль-
ность в этих реакциях определяется электроотрищательностью, поляри-
зуемостью и сольватацией, которые в свою очередь зависят от природы
атакуемого реакционного центра, уходящей группы и растворителя.

Важным фактором, определяющим реакционную способность ионов,
который долгое время не принимался во внимание, является их спо-
собность к ассоциации с противоионом \ что особенно сильно проявля-
ется в средах с низкой диэлектрической проницаемостью. При неполной
диссоциации ионофора21 константа скорости реакции будет падать с
увеличением его концентрации. Для солей галогенов это явление на-
блюдалось довольно давно. Так, Эванс с сотр.2 2·2 3 в 1948—49 гг. обна-
ружили, что константа скорости второго порядка реакции п-бутилбро-
мида с бромистым литием в ацетоне при 25° уменьшается в 3,6 раза
при увеличении концентрации LiBr в 400 раз, и объяснили это предпо-
ложением, что реагирующей частицей является бромид-ион. Аналогич-
ное наблюдение в это же время сделал Мельвин-Хьюз при изучении
реакции метилбромида с йодистым калием в ацетоне24.

Однако во многих последующих работах степень диссоциации солей
не принималась во внимание, что приводило к искажению истинной ре-
акционной способности галогенид-ионов 25. В работах 1955 г. по обмену
Финкельштейна в системах RHal—Hal" в ацетоне Ингольд с сотр.26

наблюдали, что константа скорости реакции увеличивается с умень-
шением концентрации LiHal, однако приписали это отрицательному
солевому эффекту. По их мнению, это подтверждалось уменьшением
скорости при добавлении перхлората лития, что на самом деле было
связано с подавлением диссоциации LiHal. Полученный ими ряд
реакционной способности галогенид-ионов 1~>Вг~>С1~ оказался ана-
логичным с наблюдаемым в воде и протонных средах 25, что долгое вре-
мя приписывалось эффекту поляризуемости, изменяющемуся в такой
же последовательности. Однако после того, как эти данные были пере-
считаны Уинстейном с сотр.27 с учетом степени диссоциации LiHal, ока-
залось, что ряд реакционной способности галогенид-ионов в апротон-

• ных растворителях полностью инвертируется и наблюдаемая нуклео-
фильность изменяется в ряду СГ>Вг"~>1~ (табл. 1). Отметим, что кон-
станта равновесия ионные пары^ионы увеличивается в ацетоне в ряду
С1~<Вг~<1~, но вообще зависит от природы растворителя31. Из дан-
ных, полученных Уинстейном с сотр.27, видно, что различная реакцион-
ная способность солей LiHal и n-Bu4NHal в реакции с n-BuOBs в аце-
тоне определяется только различием в их диссоциации (табл. 2).
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Для реакции метилтозилата в смеси C5H5N — ДМФ было показа-
но 29, что истинный порядок реакционной способности меняется на об-
ратный при увеличении концентрации соли до 0,35 м/л, если не учиты-
вать степени диссоциации.

Анализ имеющихся к настоящему времени данных показывает, что
соли щелочных металлов с различными анионами в растворах апротон-
ных диполярных растворителей сильно ассоциированы в ионные
пары 3 1 · 3 2, и пренебрежение этим обстоятельством существенно иска-
жает результаты. Например, в случае LiBr в ацетоне искажается по-
рядок реакции по нуклеофилу33. Как показано для реакции 1-иод-2,4-
динитробензола с KI в ацетоне34, неучет ассоциации ионов в ионные
пары приводит к кажущемуся смещению механизма от 5N2 к SNl.

Не менее важно для оценки истинной реакционной способности учи-
тывать диссоциацию алкоголятов 3\ которые в апротонных растворите-
лях типа ДМСО часто используются в качестве нуклеофилов в реак-
циях ароматического нуклеофильного замещения, и в качестве основа-
ний в реакциях элиминирования и генерирования карбанионов. Пока-
зано3 5, что алкоголяты существуют в ДМСО преимущественно в виде
ионных пар.

В последнее время для увеличения степени диссоциации MX и ROM
используют краун-полиэфиры 36. Добавка 18-краун-6 в раствор фторида
калия в ацетонитриле резко увеличивает наблюдаемую нуклеофиль-
ность (и основность) и приводит, например, к легкому замещению бро-
ма на фтор в бромистом бензиле37. В присутствии дициклогексил-18-
краун-6 алкоголят калия способен вступать в реакцию нуклеофильного
ароматического замещения, превращая (с выходом 40—50%) о-дихлор-
бензол в о-хлоранизол38. В присутствии краун-полиэфира резко воз-
растает нуклеофильность ацетат-иона и легко происходит превращение
AlkX (X = C1, OTs и особенно Вг) в ацетаты39. Аналогичным образом
добавка краун-полиэфира влияет на реакцию галогенных алкилов с
цианид-ионом 40.

Однако в большинстве рассмотренных работ принималось, что дей-
ствующей частицей в реакции нуклеофильного замещения является
свободный ион, и что вкладом в реакционную способность ионных пар
можно пренебречь, т. е. ka^>ksn, и ksa6jl. — akz. Однако в условиях, когда
соль мало диссоциирована (ос<С1), вклад ионных пар (1—a)ka a может
быть сравним с вкладом свободного иона аки, даже при условии, что
kB на порядок больше km. В последние годы в ряде работ41-50, особен-
но в работах Бьерониуса, удалось с помощью уравнения Акри 51 оце-
нить в реакциях нуклеофильного замещения с участием галогенидов
реакционную способность не только свободных ионов, но и ионных пар:

кг = (Ж, + (1 - а) £ип; КР ψ^
ί —СС

где &„ — константа реакции свободного иона; &ип — константа реакции
ионной пары; а — степень диссоциации; /±»—коэффициент активности
иона; КР — константа равновесия.

Естественно было ожидать, что величина kB, в отличие от &яп, не
должна зависеть от природы катиона. Действительно, было показа-
но 2 7 · 5 0 , что kn одинакова для различных катионов. Однако в работе
Лихтина с сотр.41 наблюдалась некоторая зависимость ka от природы
катиона, причем отмечалось регулярное увеличение отношения kjkxn

с увеличением 1/КР (табл. 3).
Обычно й и ^>^ и п

5 0 , однако, как видно из приведенных данных, вели-
чина kaa может быть соизмерима с величиной &и; так, в случае Et4NCI
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она составляет 50% от kn. Естественно, что расчет k2 по уравнению
^2=^набл./а, как это делается обычно21· 52~55, в пренебрежении участием
ионных пар, в этих случаях недопустим.

По данным42, реагирующей частицей в реакции иодидов 1-алкилпи-
ридиния с метилтозилатом в хлороформе, дихлорэтане и метилформиа-
те является только ионная пара. В растворителях же с большей диэлек-
трической проницаемостью типа ацетона и ацетонитрила вклад ионов и
ионных пар в &набл. становится уже соизмеримым (например, для
4-циан-1-этилпиридиний иодида в ацетонитриле /г„ = 17,5-10~2 л/м-сек и;
£ип=12-10-2 л/м-сек).

ТАБЛИЦА 1

Относительные константы скорости реакции RX + На1~

RX

л-РгВг
n-BuOBs
MeOTs
MeOTs *
EtOTs

Растворитель

Ацетон

ДМФ
83,3 РУ-ДМФ
ГМФТА

С 1 -

11
16

9,1
2,8

14,4

Вг-

5
4
3,4
1,5
2,0

I -

1
1
1
1

k2 л/м-мин

Ссылки на
литературу

27
27
28
29
30

была получена из кинетических данных

ТАБЛИЦА 2

Наблюдаемые и истинные константы скоростей реакции
я-BuOBs с галогенидами лития и я-тетрабутиламмония

Соль

«-Bu4NCl
LiCl1

/i-Bu4NBr
LiBr
n-Bu4NI
Lil

Лдисс.-Ю4

22,8
0,027

32,9
5,22

64,8
69

л/м-сек

33,5
0,493
9,09
2,81
1,68
2,97

t * н а б л · 1 0 .
α '

л/м-сек

58
51
13
12

2,0
3,6

ТАБЛИЦА i

Константы скорости ионов и ионных пар реакций р-нитробензилбромида
с различными бромидами и хлоридами

MX

p-NO2CeH4CH

RbCl
Me4NCl
Et4NCl

л/л · сек

3Br+M3«Cl

2,69
2,92
3,17

л/м- сек

В

0,
0,
1,

ЖИДК.

076
47
61

so2,
35

5,
1,

гип

0°

2
97

MX
Λ/Μ • сек

p-NO2CeH4CH2Br-fM8

KBr
Me4NBr
Et4NBr

7,
7,
7,

89
24
07

л/м- сек

2Вг

0
1
2

в жидк.

,38
,07
,86

Μ

SO

21
6,
2,

!ип

8
5

Для реакции р-нитробензилхлорида с хлористым литием в ацетоне,
по данным Бьерониуса 43, вклад кшп составляет менее 1% от kM\ анало-
гичным образом можно пренебречь величиной йип в реакции и-бутил-
бромида с бромистым литием в ацетоне45 или смеси ацетон — вода с
большим содержанием воды 4S. Однако при использовании вместо LiCl
в первой реакции Bu4NCl и вместо LiBr во второй реакции Bu4NBr,
при расчете истинного значения констант вкладом ионных пар прене-
брегать нельзя, так как значение kKn составляет 10 и 20% от &и соот-
ветственно. В согласии с данными Лихтина показано, что для LiCl зна-
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чение kn несколько выше, чем для Bu4NCl (2,4 и 2,0 л/м-мин соответ-
ственно) .

Сложность определения истинной величины &и состоит в неопреде-
ленности, которая связана с влиянием на величину &и солевого эффек-
та. Попытка оценить это влияние была предпринята Бьерониусом в
реакции алкилиодидов с иодид-ионом в водном этаноле47. При этом
оказалось, что в предположении минимальной и максимальной величи-
ны солевого эффекта (рассматривалось его влияние на —————,

значение &ип сильно варьирует от отрицательного до значительно по-
ложительного, составляющего 30—50% от kn.

Необходимо отметить также, что значение КР, рассчитанное из дан-
ных по электропроводности, а отсюда оценка вклада ионных пар, за-
висит не только от точности измерений (прецизионные измерения элек-
тропроводности электролитов в неводных средах стали проводиться
только в последнее время), но и от способа их расчета 5в.

Значительное внимание было уделено изучению реакционной спо-
собности ионов и ионных пар амбидентных анионов. Так, Смит и
сотр. " · 5 8 определили константы скорости метилирования йодистым ме-
тилом иона и натриевой ионной пары оксима флуоренона в смеси ацето-
нитрил-грет-бутиловый спирт. Ион оказался в 500 раз более реакцион-
носпособным, чем ионная пара.

Особый интерес представляет оценка истинного значения йи и вкла-
да ионных пар в реакциях органических амбидентных анионов типа
енолят-ионов, содержащих два нуклеофильных центра, связанных в
единую мезомерную систему. Брандстром показал59, что в реакции ме-
тилирования щелочных енолятов в спирте кинетически активными явля-
ются как ион, так и ионная пара *. Аналогичное наблюдение было сде-
лано Форсбладом60 при изучении алкилирования щелочных солей ме-
тилового эфира β-оксикумариновой кислоты. Оказалось, что в метаноле
в случае быс-пиперидиниевого енолята ионная пара активнее свободно-
го иона как при алкилировании по углероду, так и по кислороду, что,
по-видимому, связано с селективной сольватацией аниона водородной
связью. Таким образом, понижение реакционной способности за счет
образования Η-связи может быть более сильным, чем в результате
электростатического взаимодействия с противоионом большого радиу-
са и низкой плотности заряда.

Наиболее обстоятельно двойственная реакционная способность
ионов и ионных пар амбидентных енолят-ионов в реакции алкилирова-
ния изучена в серии работ6 1"6 6. Было показано, что в гексаметаполе в
области концентраций ниже, чем 0,1 М, единственной реакционноспо-
собной частицей является «свободный» енолят-ион ацетоуксусного эфи-
ра " и других ациклических β-кетоэфиров62, причем скорость алкили-
рования енолят-иона этилтозилатом изменяется симбатно основности
амбидентного аниона. В менее основной, чем гексаметапол, среде — ди-
метилформамиде — в реакции участвует не только ион, но и ионные
пары щелочных енолятов ацетоуксусного эфира63. Константа скорости
реакции с участием аниона была определена из опытов в присутствии
макроциклических полиэфиров. Более высокая реакционная способ-
ность ионной пары натрийацетоуксусного эфира по сравнению с калие-
вым енолятом определенно указывает на то, что в' ДМФ алкилирова-

* Отмерим, что алкилирование енолят — иона по атому углерода может рассмат-
риваться не только как реакция S«2, но и как реакция SE, И эта область иерекры- .!j
вается с областью изучения карбаниояных реакций.
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нию подвергается сольватно-разделенная форма ионных пар щелочных
енолятов. В такой малополярной и слабоосновной среде, как диоксан 6 4,
и даже в более основной среде, в тетраглиме65, в присутствии краун-
полиэфира в реакции принимают участие контактные ионные пары ще-
лочных енолятов ацетоуксусного эфира. Этот вывод основан на наличии
превосходной линейной корреляции величин lg kKn и обратной величины
кристаллографического радиуса катиона — зависимости, характерной
для контактных ионных пар.

Интересно отметить, что стереохимический результат О-алкилиро-
вания щелочных енолятов ацетоуксусного эфира зависит от природы
ионной частицы, принимающей участие в реакции66, так как конформа-
ции иона, сольватно-разделенной и контактной ионных пар могут быть
различны.

III. ДОКАЗАТЕЛЬСТВА СУЩЕСТВОВАНИЯ КАРБОНИЕВЫХ ИОНОВ
В РЕАКЦИЯХ SN\

Доказательства существования карбониевых ионов в реакциях ну-
клеофильного замещения обычно основаны на изучении кинетики и
стереохимии реакции типа SN\. Классическая теория реакций SN\ тре-
бует независимости наблюдаемой константы от концентрации и приро-
ды нуклеофила':

k,t медленно
RX ^ R+ + Χ" Ν

fez, быстро

при k2[N] >k~l[X-] w = k,• [RX].
Именно такие закономерности наблюдались для реакции грег-бутил-

бромида с различными нуклеофилами в нитрометане 67~69.
Другим критерием участия в реакциях карбониевых ионов является

«эффект общего иона» 70~76 («эффект действия масс», или, как его опре-
делил Уннстейн7, «внешний возврат»)—депрессия наблюдаемой кон-
станты за счет введения общего иона или его накопления в ходе реак-
ции. Механизм его действия связан с возвратом иона в результате ре-
акции с противоионом в исходное соединение и реализуется, когда
вклад &2[N~] соизмерим с k-i[X~]. Эффект общего иона проявляется тем
сильнее, чем большей стабильностью обладает образующийся карбо-
ниевый ион 71' 77~81. Общий ион выступает при этом как нуклеофильная
«ловушка» карбониевого иона. В качестве ионной «ловушки» может
быть использован посторонний нуклеофил, типа азид-иона, который при
этом не должен изменять скорость процесса, но должен влиять на со-
став образующихся продуктов, так как стадия, определяющая скорость,
и стадия, определяющая образование продуктов, в процессах SN{ не
совпадают.

HOS
медленно

RX — Х- + R+-
ROS

Именно такой результат был получен для реакций производных бенз-
гидрила и трифенилметила при использовании в качестве «ловушек»
NaN3 и NaBH4

 7 2 " 7 4 · 8 2 " 8 6 .
Другим доказательством образования карбониевого иона в реакциях

типа SN\ служит использование нуклеофильной «ловушки» в сочетании
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с изменением природы уходящей группы:
HOS

R C 1 | R 0 S

RBrJ N -
• RN

Так, реакция бензгидрилхлорида и бромида с азид-ионом в 90%-ном·
водном ацетоне приводила к смеси одинаковых продуктов, хотя скоро-
сти реакций этих галогенидов отличались в 30 раз 74> 82.

Важным критерием образования карбониевого иона является сте-
реохимический результат реакции: получение рацемического продукта
из оптически активного соединения, несомненно, указывает на механизм
SNl \ Однако в общем случае из-за участия в реакциях типа 5N1 не
только свободных ионов, но и ионных пар, стереохимия этих процес-
сов, как будет видно из дальнейшего изложения, может быть весьма
разнообразной, и изменяться от существенного обращения до полного
сохранения стереохимической конфигурации.

Наконец, следует указать еще на один критерий, который является
особенно существенным для диагностики механизма сольволитических
реакций и заключается в анализе влияния структурных эффектов на
скорость реакции.

В качестве теста на механизм сольволитических реакций Шлейер
и сотр.87 недавно предложили использовать добавку NaN3. Совершенно
очевидно, что если скорость реакции не изменяется при введении NaN3-
то растворитель, являющийся более слабым нуклеофилом, не способен
к нуклеофильному участию в скорость-определяющей стадии, т. е. ре-
акция происходит по механизму SN\.

Для достаточно стабильных карбониевых ионов возможна реализа-
ция механизма SN2C+ 6S, когда карбониевый ион образуется в предрав-
новесной стадии и медленно реагирует с нуклеофилом: &2[N]<C&,[X-].
Такой вариант, по-видимому, наиболее часто реализуется в реакциях
трифенилметилпроизводных. Однако в этих реакциях могут принимать
участие не только свободный ионы, но и ионные пары, причем их кон-
центрация в растворе может быть не стационарной, так как эти соеди-
нения могут существовать в растворе уже в ионизированном и частич-
но диссоциированном состоянии.

IV. Ионы и ионные пары в растворах трифенилметилпроизводных

Известно, что в сильнокислых растворах способны к длительному
существованию даже карбониевые ионы типа изопропил-катиона, кото-
рые относятся к неустойчивым88. Что касается более стабильных ка-
тионов типа Аг3С

+, то они образуются с количественным выходом при
действии серной кислоты на соответствующие карбинолы, и вполне
устойчивы в этих растворах89. Карбониевые ионы могут быть получены
из триарилметилпроизводных и в других средах или в присутствии кис-
лот Льюиса 90.

В менее ионизирующих средах ковалентное соединение, как следует
из данных спектральных исследований, находится в равновесии с ион-
ными парами. Так, по данным Эванса 91, Ph3CCl в растворе нитромета-
на и других нитропарафинов не диссоциирует, а только подвергается
ионизации' (/Сион, в CH 3 NO 2 ~4- 10~4); аналогично ведет себя
(р-СН3СвН4)3СС1 в нитробензоле92. В растворе дихлорэтана Рп3СС1 спо-
собен только к ионизации (/СИО„.~7,9· 10~3), в то время как
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•(р-СН4СбН4)зСС1 частично диссоциирует93. Существование двух равно-
весий в этом случае следует из линейности графика в координатах
[R+] + [R+Cl~] 1 г, „

——— ; — - . Действительно,
—— ; — - — ,

[RC1] /[RC1]

Л,
RCl^tR+СГ;

^f:R+ -f-Cl-;

к3
RC1 ^ t R +

[R+]2

[R+] + [R+C1-] „ , [R+]

Предполагается, что Ph3CBr полностью диссоциирован в растворе
m-крезола94. Степень диссоциации уменьшается при добавлении к
m-крезолу бензола или гексана 95. Увеличение диссоциации в сравнении
€ нитропарафинами происходит в хлорированных этанах, однако меж-
ду диссоциирующей или ионизирующей способностью растворителя и
его диэлектрической проницаемостью не обнаружено прямой зависимо-
сти93. Хорошим ионизирующим растворителем, несмотря на низкую ди-
электрическую проницаемость (ε=15,4 при 0°), является жидкая дву-
окись серы9 6·9 7. Растворы Ph3CCl в жидкой SO2 проводят ток, а сопо-
ставление спектральных и кондуктометрических данных98 позволило
рассчитать константу ионизации (/(,= 1,3· 10~2 при 0°) и константу дис-
социации ионной пары на свободные ионы (/С2 = 3 -10~3 М/л при 0е) " · 10°.
По данным97, жидкая SO2 является в 5-Ю10 более ионизирующим рас-
творителем, чем нитробензол (/Ci = 4 · 10~3 в PhNO2 и 2 · 10s в жидкой
SO2).

Недавно показано ш , что ионизация Ph3CCI в эфире, о которой суди-
ли по скорости изотопного обмена с *С1~, промотируется перхлоратом
лития, который в этом растворе образует агрегаты различного строе-
ния. Диссоциация и ионизация Аг3СХ увеличивается при комплексооб-
разовании с кислотами Льюиса 9 0 · 1 0 2 . Влияние солей на эти процессы
убывает в ряду: SbCl 5 >FeCl 3 >SnCl 4 >BiCl3>HgCl 2 >SbCl 3

1 0 3 .
Комплекс (XC6H4)3CCl-HgCl2 ( Х = Н , р-С\, р-СН3) в CH3NO2 подвер-

гается не только ионизации, но и диссоциации104·105, еще легче в этих
условиях диссоциируют бромиды 106. Аналогичные данные были полу-
чены и в других растворителях 10\ Судя по спектральным данным, по
своей способности ионизировать комплекс растворители располагаются
в ряд: CH3NO2>C6H5C1>C6H6; естественно, что следует принимать во
внимание способность растворителя сольватировать как анион, так и
карбониевый ион, а также учитывать возможность изменения коэффи-
циента экстинкции карбониевого иона под влиянием сольватации107.
Кроме того, отношение диссоциированной формы к ковалентной
может изменяться в ходе реакции под влиянием эффекта общего
иона 108.

При переходе от триарилметилгалогенидов к перхлоратам ионность
соединений увеличивается, о чем свидетельствуют данные по электро-
проводности 1 0 9- 1 и и спектрам поглощения112·113. Триэтилперхлорат в
хлорированных растворителях (СНС13, СН2С12, СН3СНС12, СН2С1СН2С1)
полностью ионизирован и частично диссоциирован114.
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Наличие ионов и ионных пар в растворе изотиоцианата тропили»
доказано методом ЯМР " 5 .

RNCS φ R+NCS- ^ R+ + NCS~

Соотношение между ковалентной формой и ионными частицами зави-
сит от состава растворителя и температуры. Так, в CD3CN образуются
только свободные ионы, а в его смеси CDC13 (1:3) при 40° наряду с
ними существуют ионные пары.

Для описания реакционной способности диссоциирующих и иони-
зирующих органических соединений требуется, как это было рассмот-
рено на примере MX, отдельно оценить вклад каждой из реагирующих
форм.

В средах с низкой диэлектрической проницаемостью реакции ну-
клеофильного замещения в ряду Аг3СХ могут происходить по механиз-
му SNl, при котором диссоциация (или ионизация) осуществляются в
лимитирующей стадии процесса, а ионы и ионные пары существуют в
стационарной концентрации. Нуклеофилы, способные к образованию
Η-связи с уходящей группой, при этом могут оказывать содействие
ионизации, а так как в этих средах они могут быть ассоциированы, то
наблюдаемый по ним порядок оказывается сложным "•116-118. В свое
время это обстоятельство, а также другие осложнения, связанные с
возвратным механизмом, вызвали острую дискуссию между Ингольдом
с сотр.119"123 и Свэном с сотр.124"128. Осложнения в кинетике могут вы-
зываться также агрегацией ионных пар 1 2 9 · 1 3 0 .

В этих средах можно полагать, что механизм SN\ включает только
образование сольватно-разделенных ионных пар. Такое предположение
подтверждается отсутствием депрессии константы скорости при мета-
нолизе дифенил(р-толил)метилтозилата в смеси ТГФ-метанол (10%)
под действием общего иона, и значительным увеличением скорости этой
реакции при добавлении LiC104

131·
В настоящее время существует значительное число работ по иссле-

дованию реакционной способности свободных триарилметилкатионов.
Первоначально эти исследования охватывали наиболее стабильные
ам'инозамещенные триарилметановые красители, скорости реакций ко-
торых были не столь велики 132-135. Однако с применением метода останов-
ленной струи круг исследуемых карбониевых ионов значительно рас-
ширился 136-140. Было изучено влияние добавок солей на скорость реак-
ции Аг3С

+ с Н2О
 ш · 1 4 2 и показано, что изменение скорости обусловлено

ассоциацией карбониевого иона с анионом добавленной соли, в частно-
сти, образованием ионных пар с перхлорат-анионом.

Особое место среди этих работ занимают превосходные исследова-
ния Ричи 143-150, включившие изучение скоростей и равновесий реакций
Аг3С

+, а также замещенных ионов тропилия и фенилдиазония с разно-
образными нуклеофилами в ряде растворителей. В этих работах были
получены необычные результаты, которые пока не нашли полного объ-
яснения. Во-первых, было1 показано, что нарушается принцип «стабиль-
ность— реакционная способность». Хотя в серии некоторых ионов на-
блюдалась требуемая антибатность между стабильностью иона \>Кп+
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и скоростью его реакции с нуклеофилами, в целом уравнение Бренсте-
да оказалось неприменимым, и в ряде случаев отсутствовала какая-
либо закономерность между изменениями логарифмов констант скоро-
сти и равновесия. Отметим, что ранее также указывалось на отсутствие
корреляции между величинами \gk реакции Аг3С

+ с Н2О и p/CR+ при
варьировании числа пара-заместителей от одного до трех136. Однако·
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корреляция «реакционная способность—стабильность» наблюдалась в
реакциях гидридного восстановления Аг3С

+ 1 3 7 · 1 3 8 .
Во-вторых, в работах Ричи был обнаружен поразительный факт оди-

наковой селективности карбониевых ионов, значительно отличающихся
по своей стабильности. Из данных по распределению продуктов конку-
рирующих реакций в процессах типа БЯ1 известно, что селективность
(избирательность по отношению к нуклеофилам) карбониевого иона
зависит от его стабильности. В 1966 г. было показано152, что для серии
реакций SNl существует линейная зависимость * между lg &4 и
lg(&N/#s) (&N — константа скорости реакции с N7, ks — константа ско-
рости реакции с Н2О; отношение ^N-[NJ]/^S может быть найдено из
распределения продуктов реакции [RN3]/[ROH]. Полученная зависимость
была дополнена Шлейером с сотр.153 и Харрисом с сотр.154.

ТАБЛИЦА 4

Сравнение стабильности замещенных ионов тропилия
с их реакционной способностью по отношению к ОН" и Н2О

Катион

с7н+
С„Н6С7Н+

р-С1С6Н4С7Н+

р-СНЛН 1 С т Н+

p-Me2NCeH4C7H+

VK
R+

4,76
4,86
4,55

5,75

6,90

сек-*2

2,6
1,0

1,2

0,27

0,02

*он-
л/ моль -сек

3,1-10»
7,9-10*

1,4-Ю5

4,0-Ю4

1,7-10»

Из данных Ричи следует, что скорость реакции карбониевого иона
с нуклеофилом возрастает с увеличением нуклеофильности последнего,
однако отношение kx/ka остается практически постоянным для всех ис-
следованных карбониевых ионов. Для примера приведем результаты,
полученные для реакций замещенных ионов тропилия с ОН~ и Н2О
(табл. 4); хотя изменения в реакционной способности происходили на
2 порядка, а изменение в стабильности достигает 2,5 порядков, отно-
шение &он-/&н2о весьма близки 143.

Наблюдаемый факт возможно объясняется тем 155, что скорость ре-
акции определяется десольватацией нуклеофила, которая не зависит от
природы катиона.

Значения N+ = lg&N/£H2o, г Д е k*~ константа скорости реакции в оп-
ределенном растворителе и &н2о— константа скорости реакции того же
катиона с водой в чистой воде, предложены 1" в качестве характеристи-
ки нуклеофильности нуклеофила N в данном растворителе. Полученная
последовательность изменения нуклеофильности, не говоря уже об абсо-
лютных значениях, весьма сильно отличается от имеющихся в литера-
туре и определенных по отношению к другим субстратам данных156-159.

Уникальные данные по реакционной способности бензил-катиона по-
лучены недавно Дорфманом с сотр.160. Авторы с помощью импульсного
радиолиза генерировали из различных бензильных производных

* Следует иметь в виду, что линейная зависимость может искажаться возврат-
ным механизмом, хотя предполагается 154, что доля возврата в водном этаноле, в ко-
тором получена корреляция, мала.
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бензил-катион, и определили константы скорости его реакций
(kf, л/м-сек) с метанолом (7,4· 107), этанолом (1,3· 108), бромид-
(5,2·1010) и иодид-ионами (4,9-1010).

V. ДОКАЗАТЕЛЬСТВА СУЩЕСТВОВАНИЯ ИОННЫХ ПАР
В РЕАКЦИЯХ Sjf 1

1. Специальный солевой эффект

Проверка идеи о возможном участии ионных интермедиатов различ-
ного типа в сольволитических реакциях послужила толчком для осу-
ществления Уинстейном с сотр. целого цикла работ по изучению соле-
вых эффектов в реакциях сольволиза сульфонатов и галогени-
дов8·1 6 1-1 7 0. При проявлении нормального солевого эффекта добавки со-
лей типа LiC104, не содержащих одноименного иона, вызывают увели-
чение титриметрически определяемой константы скорости сольволиза

0,03 0,06 0,09 [LICIO4],M

Рис. 1. Типичная зависимость кон-
станты скорости сольволиза от кон-
центрации. LiC104 при наличии спе-
циального солевого эффекта. Точ-
ки—значения kt°, ПувКТИр — &°ext

Рис. 2. Зависимость константы
скорости ионизации р-метоксинео-
филтозилата от концентрации

LiCl4O в Et2O и АсОН

(kt) согласно уравнению: kt = k° (1+ЭДсоль]), где Ь характеризует вели-
чину нормального солевого эффекта. Такая зависимость наблюдалась
при сольволизе ряда первичных и даже вторичных систем в водном
ацетоне и уксусной кислоте161'164. Однако в ряде случаев при введении
в реакционную смесь малых количеств LiC104 наблюдалось резкое уве-
личение скорости реакции (рис. 1). Такое явление получило название
«специального солевого эффекта» и наблюдалось, например, в систе-
мах: о- и р-анизилэтилтозилат в среде АсОН — спирт162, транс-2-р-анн-
зилциклопентил- и гранс-2-/?-анизилциклогексилброзилаты, 1-р-анизил-
2-пропилтозилат, э/шгро-З-р-анизил-2-бутилброзилат в АсОН163; 2-(2,4-
диметоксифенил)этилтозилат в АсОН165. При дальнейшем увеличении
концентрации LiC104 наблюдался только нормальный солевой эффект
Б соответствии с уравнением kt = klxt (1+b[LiC104]), и, таким образом,
величина специального солевого эффекта определяется отношением
&ext/k? (см. рис. 1).

Уинстейн с сотр. предположили, что сольволитический продукт
(ROS) может образовываться из карбониевого иона или разделенной
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растворителем ионной пары, а возврат к ковалентной форме может про-
исходить на всех стадиях: внешний возврат из иона (enternal ion re-
turn, k~t) происходит с участием аниона Х~ и, следовательно, зависит
от его концентрации; возврат внешней (сольватно-разделенной) ионной
пары (external ion pair return, k-2) и возврат внутренней (контактной)
ионной пары (internal ion pair return, £_,)

ην '_^Κ,Λ. ч-
(I) ft-,

R+X-
(H)

R+ || X- ^ k
(III) *-3

4 " }HOS
ROS

: R+ + X-
(IV)

4 V | HOS

ROS

Предполагалось также, что обмен анионами может происходить только
с участием сольватно-разделенной ионной пары, при этом она превра-
щается в другую, более реакционноспособную ионную пару; тем самым
подавляется стадия возврата &_2:

R+||X- + M+||Y- =̂ R+1|γ- + М+1|X-

(обмен с участием ионной пары M+]|Y~);
R+1| Х- + Y- ^ R+1 Y- + X-

(обмен с участием иона Υ").
Влияние же, оказываемое LiC104 на отношение kjk-lt соответствует
проявлению нормального солевого эффекта.

Таким образом, механизм действия LiC104 состоит в обычном «хи-
мическом захвате», который в отличие от захвата другими нуклеофила-
ми (N~) приводит не к устойчивому соединению RN, а к хорошо иони-
зирующемуся соединению, образующему в растворе реакционноспо-
собный ионный интермедиат. Такой механизм действия LiC104

подтверждается подавлением специального солевого эффекта при добав-
лении соли с общим ионом, например, LiOTs в реакции ROTs1ββ из-за
конкуренции за ионную пару (III). Отметим, что LiOTs при ацетолизе
1-/?-анизил-2-пропилтозилата обнаруживает положительный солевой эф-
фект. Отсутствие депрессии величины kt под действием OTs~ предпола-
гает отсутствие стадии возврата с участием свободного иона, т. е. внут-
римолекулярный характер стадии возврата.

В принципе, отсутствие депрессии константы под действием общего
иона возможно в двух случаях: 1) для очень реакционноспособных
ионов, для которых &sV>&-3; 2) при осуществлении сольволитичеекой
реакции только с участием рыхлой ионной пары (klil^>k3). В ряде
других реакций, например, при ацетолизе 1-р-анизил-2-пропилтозилата
или норборнилтозилата, добавка LiOTs приводила к уменьшению соль-
волитичеекой константы168. Уинстейн и сотр. провели исчерпывающий
кинетический анализ, позволяющий получить выражение для титримет-
рической константы сольволиза в условиях отсутствия влияния общего
иона (fe_j[X~] = 0) и в условиях полной депрессии (^_3[X~]^>^s ). Раз-
работанный метод позволяет в определенных случаях не только прове-
сти диагностику ионных пар, но и осуществить количественный расчет
доли возврата на различных стадиях.

Следует отметить, что в работах Уинстейна неоднократно подчер-
кивалось, что наличие специального солевого эффекта доказывает су-
ществование стадий возврата, однако возвратный механизм может осу-
ществляться и в отсутствие специального солевого эффекта.

В качестве ловушки сольватно-разделенной ионной пары может вы-
ступать и бромид-ион167; показано, что образование RBr в случае 2-р-

7 Успехи химии, № 12
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анизил-3-бутилброзилата и 1-р-анизил-2-пропилтозилата в АсОН про-
исходит по первому порядку и что обмен подвержен действию нормаль-
ного солевого эффекта.

Особенно большие солевые эффекты наблюдаются в малополярных
и слабоионизирующих средах. Уксусная кислота, в которой проводи-
лась большая часть реакций по изучению солевых эффектов, является
слабополярным, но достаточно ионизирующим растворителем169·"°.
Скорость ионизации р-метоксинеофилтозилата в эфире при добавлении
0,1 Μ LiC104 возрастает на огромную величину — в 105 раз (Ь в АсОН
равно 12,2 и в Et2O 2,98· 105)169. Получается, что при некоторой концен-
трации LiC104 (>0,036 M) эфир становится лучшей ионизирующей сре-
дой, чем уксусная кислота (рис. 2). Предполагается170, что в подобного
типа растворителях добавленная соль, существующая в виде ионной,
пары, координируется с субстратом с образованием квадруполя
RX+M+Y~=?±4R+X~M+Y~], и в результате такого электрофильного содей-
ствия промотирует ионизацию RX.

Применение LiC104 в слабодиссоциирующих растворителях может
привести к определенным искажениям зависимости lg& = f([LiClOJ).
По-видимому, с этим обстоятельством связана критика работы Уинстей-
на, основанная на изучении влияния добавок солей на скорость реак-
ции тритилхлорида с метанолом в бензолеm без учета диссоциации.
добавляемых Bu4NCl и Bu4NC104.

2. Распределение продуктов в конкурирующих реакциях.
Нуклеофильные «ловушки» ионных пар

Влияние уходящей группы

Одним из методов доказательства существования карбониевого иона,,
как уже упоминалось, является использование нуклеофильных «лову-
шек», не изменяющих в случае классического процесса SN\ скорости
реакции, но изменяющих состав образующихся продуктов2·74·83. Конку-
ренция сильного нуклеофила с растворителем за ионный интермедиат
выражается фактором конкуренции FN = kN/ks

m, который легко опреде-
ляется из экспериментальных данных по выходу продуктов (kN/ks =
=[RN]/[ROS]-[N]), причем F N растет с ростом стабильности катионного
интермедиата 1 5 2 · 1 5 3 · 1 7 3 . Для неустойчивого карбониевого иона, обладаю-
щего малой селективностью, значение FN должно приближаться к еди-
нице.

Одним из тестов на механизм SNl, как уже указывалось, является
отсутствие влияния на величину F^ природы уходящей группы. Так, со-
отношение [RN3]/[ROH]=1,94 одинаково для реакций бензгидрилхлорида
и бромида в водном ацетоне74.

Однако было замечено, что Fn * зависит не только от природы R в
RX, но и от природы уходящей группы'", что дало возможность пред-
положить участие в некоторых реакциях SNl не свободных карбониевых
ионов, а ионных пар.

Так, соотношение алкен/спирт в реакции грег-бутилпроизводных за-
висит от природы уходящей группы176. Возможно, конечно, другое объ-
яснение этого результата, связанное с частичным осуществлением этой:

* Подробный анализ влияния различных факторов на (величину FN (не только
структуры субстрата, природы уходящей группы и нуклеофила, но также среды, тем-
пературы и даже скорссти перемешивания), данный в 1 7 4, показывает, что к сравнению
этих величин, полученных в различных работах, следует относиться с осторожностью..
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реакции по механизму SN2. Различие в селективности в зависимости от
природы уходящей группы наблюдалось также в реакции 2-адамантил-
аренсульфонатов в смеси спирт — вода '" . Отношение ROEt/ROH умень-
шалось с увеличением стабильности (с ростом \gk), хотя при атаке на
свободный карбониевый ион следовало бы ожидать обратного соотно-
шения, учитывая большую нуклеофильность этанола. Предполагается,
что в этих реакциях участвуют сольватно-разделенные ионные пары,
из которых более стабильной является ионная пара, разделенная моле-
кулой воды

R — О S, R---O So

H---O ^"Ar H-.-o '*'-Ar

Значительное влияние природы уходящей группы на величину
/*N = &..-/W отмечалось в реакции Ph3CX (X = C1, Вг) в 80%-ном аце-

3

тоне175. Было показано, что выход углеводорода в сравнении со спир-
том увеличивается при переходе от хлорида к бромиду в реакциях
бензгидрил- и особенно α-фенилэтилгалогенидов с NaBH4 в водном диг-
лиме i 7 S. Влияние уходящей группы на состав продуктов сольволиза
наблюдалось в реакциях циклобутиларенсульфонатов т .

Фактор селективности при сольволизе тритилхлорида (с = 0,013 М)
в 95%-ном водном диоксане в присутствии NaN3 (c = 0,039 M) резко
изменялся при добавлении в реакционную смесь нитрата и особенно
перхлората лития180 ([ROHHRN3] 20,2/79,8 в отсутствие соли и 41/59 при
LiC104=0,089 Μ), что можно рассматривать как довод в пользу обра-
зования из R+||C1~ более устойчивой и менее селективной ионной пары
R+||C1O7. Возможно, однако, иное объяснение180, связанное с влиянием
ионной силы на скорость двух «продукт-определяющих» реакций и боль-
шим торможением под действием солевого эффекта ион-ионной реак-
ции (РЬ3С

+ + Ыз) в сравнении с ион-дипольной (Ph3C
+ + H2O).

Сравнение стабильности ионных пар на основании
данных конкурентного замещения

Сольволиз α,α- и γ,γ-диметилаллилхлоридов приводит к смеси пер-
вичных и третичных спиртов, что позволило предположить общий для
обеих реакций ионный интермедиат. Однако при действии на эти соеди-
нения NaBH4 в водном этаноле отношение образующихся углеводоро-
дов (Ме2С = СН—СН3 к СН2 = СН—СЙМе*) оказалось различным (12,0
для α,α- и 6,25 для γ,γ-диметилаллилхлоридов)181. Это различие не свя-
зано с одновременным протеканием реакции по механизмам SN\ и SN2
или SN2', так как увеличение концентрации NaBH4 вдвое не приводит
к существенному изменению этих отношений. Отсюда можно сделать
вывод, что в реакциях образуются ионные пары близкого, но не иден-
тичного строения, т. е. они различаются делокализацией заряда в ка-
тионном фрагменте, что оказывается существенным для атаки гидрид-
ионом.

Интересные данные были получены182 при сравнении реакционной
способности и состава продуктов реакции при гидролизе в водном
диглиме циклопропилкарбинил-(У) и циклобутилмезилатов (VI) и их
1-метилзамещенных в присутствии NaBH4 или NaNs. Реакционная спо-
собность (V) почти на порядок превышала реакционную способность

7*
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(VI), однако состав образующихся спиртов был практически одинаков:
(V) — ОН и (VI) — ОН ( ~ 1 : 1) и немного аллилового спирта. Это да-
вало возможность предположить, что в лимитирующей стадии образу-
ется общий для обеих реакций интермедиат, которым мог быть «не- ψ
классический» бициклобутониевый ион. Однако фактор конкуренции
t'v = kN/kMfi (Ν = ΒΗΓ, Νί) оказался различным, большим для (V)*.
Кроме того, соотношение образующихся в реакции с NaBH4 углеводо-
родов также различно: метилциклопропана в реакции с (V) образовы-
валось в три, а в реакции с (VI) в два раза больше, чем циклобутана.
Отсюда следует вывод, что в реакции участвует не свободный карбо-
ниевый ион, а ионная пара, причем структуры ионных пар для (V) и (VI)
близки, но не идентичны. Из данных по реакционной способности и се-
лективности следует, что ионная пара (V) более стабильна, чем ионная
пара (VI), т. е. первичная пара более стабильна, чем вторичная. К это-
му же выводу приводит изучение FN для 1-метилзамещенных (V) и
(VI); введение метильной группы приводит к снижению селективности,
гаким образом, в отличие от свободных карбониевых ионов селектив-
ность (и, по-видимому, стабильность) ионных пар уменьшается в ряду:
первич.>вторич.>третич.

Аналогичная закономерность наблюдалась авторами174 для сульфо-
натов и галогенидов ряда «классических» систем для изучения процес-
сов SNl. Однако авторы отмечают неоднозначность использования кри-
терия Fit для суждения о механизме в промежуточной области, где ре-
зультаты могут трактоваться как с точки зрения конкуренции механиз-
мов SN\ и SN2, так и с позиции ион-парного механизма SN2 предложен-
ного Снином 183, так как в этом случае соотношение между FN и структу-
рой может быть достаточно сложным.

Нуклеофильные «ловушки» ионных пар \

Использование в реакции 7-хлорнорборнадиена в качестве нуклео-
фильной ловушки «неклассического» карбониевого йо"на литийалюмо-
гидрида в эфире привело к образованию наряду с норборнадиеном «не-
классической структуры» (А)184, которая, по мнению авторов, образу-
ется из контактной ионной пары, так как трудно предположить реали-
зацию механизма SN\ в этом растворителе или SN2 атаку гидрид-иона
на двойную связь

(А)

Интересной «ловушкой» ионных пар в реакции бензгидрил- и р-хлор-
бензгидрилхлорида в 80%-ном ацетоне оказался нитрат кобальта185.
Из того факта, что Co(N0 3 ) 2 оказывает большое влияние на скорость
сольволиза, но не оказывает влияния на поляриметрическую константу,
сделан вывод, что рацемизация происходит с участием ионных пар од-
ного типа (по-видимому, контактных), а «захват» осуществляется с уча-
стием сольватно-разделенных ионных пар.

* Существенно, что скорость реакции» присутствии NaNs изменяется незначи-
тельно, .наблюдается лишь небольшой положительный солевой эффект, что говорит
против механизма Sn2.
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3. Стереохимия

Сравнение скоростей рацемизации, сольволиза и изотопного
обмена

Идея участия ионных пар и существование стадии возврата в соль-
волитических процессах типа SNl была привлечена Уинстейном с
сотр.18в для объяснения различия в константах скоростей потери опти-
ческой активности и сольволитической реакции экзо-норборнилброзилэ-
та (ka>kt), причем в цитируемой работе наблюдалась закономерность,
которая подтвердилась в дальнейшем: доля возврата увеличивалась с
уменьшением нуклеофильности растворителя.

растворитель АсОН ЕЮН 75%-ный ацетон
kjkt 3,45 2,94 1,40

На примере З-фенил-2-бутилтозилата было показано187, что «избы-
ток» рацемизации обязан именно возврату ионной пары, а не свобод-
ных ионов, так как при добавлении NaOTs отношение ka/kt практиче-
ски не изменяется и равно в этаноле, АсОН и НСООН 2; 4,5-f-5 и 1,18
соответственно. Отношение kjkt при сольволизе т/?ео-3-/?-анизил-2-бу-
тилброзилата изменяется от 4,1 в АсОН до 16 в смеси 10% НСООН —
диоксан188. Обе константы увеличиваются при добавлении LiC104 в соот-
ветствии с уравнением для солевого эффекта; Ьа=16,2 и Ь( = 21,6.

Аналогичный способ доказательства существования ионных пар в
реакциях бензгидрильных систем основан на сравнении величины kt

или константы скорости обмена галогенидов с радиоактивным галоге-
нид-ионом ke с величиной ka (определяемой поляриметрически). Так,
было показано, что скорость потери оптической активности соединения-
ми PhCHClC6D5 и PhCDClC6D5 превышает суммарную скорость сольво-
лиза и обмена с радиоактивным *С1~189: ka/kt~3 в 50%-ном ацетоне,
a kJkt = 20 в MeNO2 и 100 в жидкой SO2.

Определение констант ka, kt, ke с использованием р-хлорбензгидрил-
хлорида было выполнено в серии работ Уинстейна с сотр. β · 1 9 0 - 1 9 5 в раз-
личных, в том числе и апротонных, растворителях. Сравнивались зна-
чения констант, полученные при экстраполяции к нулевой концентрации
соли. В табл. 5 приведены растворители, их диэлектрические проницае-
мости, полученные значения констант и отношения ka/k, или kjkf

Как видно, во всех растворителях ka больше kt или ke, т. е. скорость
возврата превышает скорость химического захвата. Величина ka сильно
зависит от ионизирующей способности растворителя. Интересно отме-
тить получение для всех шести растворителей при 75° линейной зави-
симости lg&° от \gkl сольволиза р-метоксинеофилтозилата1Э6: \gka —
= 4,22 + 2,02 l g ^ .

Отношение констант (k°Jk? или k°a/ko

e), естественно, характеризует
отношение нижнего предела скорости ионизации к скорости химиче-
ского захвата, так как часть возврата может происходить с сохранением
стереохимической конфигурации. Это отношение, как уже отмечалось,
сильно зависит от природы растворителя и уменьшается при увеличе-
нии его нуклеофильности.

Для сольволитических реакций это происходит за счет увеличения
feN (константы скорости реакций ионной пары с растворителем); для
реакции обмена также предполагается первоначальная атака пары
R+||X~ молекулой растворителя с образованием более реакционноспо-
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собного в обмене интермедиата, например, j Q
OR

(и та

менее устойчивых C H 3 C = N + — R и Ме2С = О+—R). Из полученных дан-
ных следует, что в большинстве использованных апротонных диполяр-
ных растворителей большая часть ионных пар возвращается в исходное
соединение и только некоторая их часть обменивается.

Аналогичным образом проведено в различных растворителях срав-
нение скоростей обмена хлора и потери оптической активности для со-
единений PhCH(Cl)CH3 и PhCH(Cl)CH(CH 3) 2

1 9 7. Во всех случаях зна-
чение ka превышает значение ke, хотя изменение структуры и раствори-
теля, естественно, влияет на величину их отношения. Подробное иссле-
дование сольволиза α-фенилэтилхлорида проведено в 60%-ном водном
диоксане198. Найдено, что добавка LiC104 приводит к значительному
увеличению скорости *, а добавка LiCl почти не влияет на скорость (ka

ТАБЛИЦА 5

Влияние растворителя на величины констант &°, ft°, k\ и их отношение для реакции
р-хлорбензгидрилхлорида с хлорид-ионом

/, "С

25
25
75
11
11
11

Растворитель

АсОН
80% СН3СОСН3

CH3NOa

CH3CN
HCONMe2

СН3СОСН*

ε

6
30
37
37
37
21

ft°-io·.

сек-1

68
60

145
60,7
18,9
1,38

ft'·10е,

сек-1

1,8
23,1

.

. .
.—

—

ft,0· ιο· .
сек-*

•—

3,25
0,2
5,0

0,03

·*
в2е ·

л-моль"1-сек—1

—

1,03
1,23
2,00
1,90

38
2,6
—

—

—

—
44

304
4

50

* Оба процесса, характеризуемые ka и ke, слабо ускоряются солями лития (LiCl, L1C1OJ и очень
сильно — солями тетрабутиламмония (Bu4NCl, Bu4NClO4), но отношение констант изменяется мало.

· * k2e — константа скорости бимолекулярного обмена с ков.)лентным RC1, найденная как угол накло-
на зависимости ke*= f ([MCI]) при низкой концентрации меченной изотопом соли: ke— ke -f- /г2е [Bu4NCl].
Величина k2e практически одинакова во всех растворителях.

и kt), что свидетельствует об ионизационном, а не диссоциационном
характере процесса. При этом отношение kjkt практически остается
постоянным: 1,18 (без добавки); 1,40 (0,23 Μ LiCl); 1,42 (0,23 Μ
LiC104). Объяснение наблюдаемых закономерностей дано авторами193

в соответствии с концепцией Уинстейна о существовании равновесия
между различными ионными интермедиатами, в том числе и ионными
парами, сольватированными растворителем.

Аналогичная закономерность {ka~>kt) наблюдалась и при сольволизе
этого соединения в трифторэтаноле и водном этаноле199. По мнению
авторов199, в реакции принимают участие как сольватно-разделенные
ионные пары, так и контактные, взаимодействие которых с растворите-
лем происходит с инверсией. Таким образом, общая схема включает
следующие равновесия и процессы:

* Отметим, что в случае р-хлорбензгидрилхлорвда в 80%-ном ацетоне величина
kt больше и отсутствие LidO*, чем при добавлении его в малых концентрациях, т. е.
зависимость kt = i [LiC104]) проходит через минимум.
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Из их данных следует, что из 100 контактных ионных пар в CF3CH2OH
(97—100%) 80 испытывают возврат, 18 сольволизуются (через сольват-
но-разделенные ионные пары) и 7 инвертируют конфигурацию, а в
'60%-ном этаноле 70 подвергаются возврату, 28 сольволизуются и 1,4
инвертируют конфигурацию.

Обмен в системе α-фенилэтилгалогенид — галогенид-ион (На1 =
= С1, Вг), а также реакции с другими нуклеофилами, изучены Парке-
ром 2 0 0 · 2 0 1 в жидкой SO2 и CH3NO2. При этом также отмечалось, что
скорость рацемизации (ka) превышает скорость обмена (ke) вместе со
скоростью сопровождающего его дегидрохлорирования (ka). Отноше-
ние возврата с рацемизацией к химическому захвату составляло 9 в
SO2 и 4 в CH3NO2. Однако существенная часть обмена в этих условиях,
так же как для бензгидрилбромида, происходила по механизму SN2Z0*;
при этом получалось, что k2CL = 2k2e, т. е. в соответствии с теорией каж-
дый акт бимолекулярного обмена сопровождался обращением конфи-
гурации.

Мономолекулярная константа скорости рацемизации р-метилбенз-
гидрилхлорида в CH3NO2 в 20 раз превышает константу скорости реак-
ции с различными нуклеофилами (в соответствии с механизмом SNl
получена одинаковая величина константы £1~0,02-10~5 при 0е для раз-
личных нуклеофилов: N3 , С1~, Ру, Et3N

 2 0 0 ) .
Участие ионных пар при «сольволизе» втор-бутилхлорида в ДМФ

(продуктами реакции являются бутен-1, бутен-2 и 2-бутилформиат) в
присутствии Li36Cl также подтверждается сравнением скоростей соль-
волиза, рацемизации и обмена203.

«Аномалии» в стереохимии

Участие ионных пар в мономолекулярных реакциях легко объясняет
различные «аномалии» в стереохимических результатах, наблюдаемые
в этих процессах. Так, известно, что в некоторых сольволитических ре-
акциях, идущих по механизму SNl, наблюдается преобладание обраще-
ния конфигурации над рацемизацией. Например, метанолиз 2,4-диме-
тилгексил-4-фталата, т. е. замещение у третичного атома углерода, про-
исходит на 54% с обращением конфигурации и на 46% с рацемиза-
цией204. Обычно такой результат объясняют экранированием нуклео-
фильной атаки со стороны уходящей группы, что практически является
признанием участия в реакции ионных пар.

Аналогичный стереохимический эффект уходящей группы, приводя-
щий к преимущественному, хотя и не исключительному, обращению кон-
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фигурации, наблюдался при ацетолизе изомерных 4-7у?ег-бутил-1-цикло-
гексилтрифторметилсульфонатов (трифлатов) (I) 2 0 5 . Реакция приводи-
ла в основном к образованию олефина и лишь некоторого количества
ацетатов, причем обращение составляло 94% для (Ie)OTs и 75% для 1
(Ie)OTs. Это дало возможность авторам205 предположить, что в реак-
ции участвуют не свободные карбониевые ионы, а контактные ионные
пары. Те же выводы ранее были сделаны для объяснения неполной ин-
версии в реакциях винильных трифлатов206-208.

Наибольший интерес с точки зрения механизма и возможности уча-
стия в реакциях ионных пар представляют реакции нуклеофильного за-
мещения, происходящие с сохранением стереохимической конфигурации
в тех случаях, когда этот результат не связан с участием соседних
групп, а является следствием фронтальной атаки нуклеофила209·210.
В серии работ по исследованию стереохимии сольволиза оптически
активного α-фенилэтилхлорида Окамото с сотр.211-219 показали, что в
зависимости от состава растворителя стереохимическии результат реак-
ции может быть весьма различен. Так, при сольволизе в системе мета-
нол— фенол — триэтиламин в случае 50%-ного содержания (по весу)
фенола оба продукта (фенолиза и метанолиза) образуются с обраще-
нием конфигурации, при содержании фенола 85—95% оба эфира пол-
ностью сохраняют конфигурацию, а в 75%-ном феноле метиловый эфир
образуется с обращением, а фениловый — с сохранением конфигура-
ции 2 ". Одним из возможных объяснений, предложенных Окамото2"·21S,
является ориентированная координацией атака молекулы растворителя
на ионную пару со стороны уходящей группы. Это объяснение во мно-
гом аналогично схеме Крама3, предложенной для объяснения сохране-
ния конфигурации у карбанионного центра в реакциях с участием ион-
ных пар: 1\

R \ Г
.О Η. С1—»-Н

Н' O-R ,+ •

/i\"x

Другое объяснение сохранения конфигурации заключается в рас-
смотрении различий в сольватации карбониевого иона, который сольва-
тируется молекулами растворителя равномерно, и ионной пары, которая
может сольватироваться несимметрично со стороны карбониевого цент-
ра. Если такая сольватация частично приобретает «статус» связи, т. е.
достигается направленность и некоторое перекрывание орбиталей, хотя
и более слабое, чем при нуклеофильной атаке *, то возможна ситуация,
при которой нуклеофилу легче атаковать карбониевый центр со сторо-
ны уходящей группы, чем с обратной стороны, экранированной молеку-
лой растворителя. Именно такое предположение было выдвинуто для
объяснения частичного сохранения конфигурации в реакции оптически
активного 2-бромоктана с тиоцианат-ионом в ДМСО2 2 0. С этих же по-
зиций авторы221 объяснили значительное сохранение конфигурации в
реакции SNl третичной системы — /-фенилбифенил-а-нафтилметилбен-
зоате — в водном ацетоне, водном диоксане и абсолютном спирте.

* Из сказанного видно, сколь размыта лраница между электростатической сольва-
тацией и образованием ковалентной связи, приводящая к механизмам SNl и SN2 Э »
сольволитических реакциях. "
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Сохранение конфигурации за счет участия растворителя привлечено·
Окамото222 для объяснения стереохимического результата реакции
α-фенилэтилхлорида с карбоновой кислотой в ацетонитриле; доля сохра-
нения конфигурации в этой реакции возрастает с увеличением содержа-
ния CH3CN. Предполагается, что реакция идет с участием сольватиро-
ванной с «тыла» ионной пары MeCN...R+...X~, в которой взаимодействие
реакционного центра с растворителем является более сильным, чем вза-
имодействие с уходящей группой. Отметим, однако, что рассмотренные
здесь сольватированные ионные пары не являются сольватно-разделен-
ными и их участие в реакции предполагает возможность осуществления
реакции SNl (или SN2?) через еще один ионный интермедиат — соль-
ватированную контактную ионную пару. Сольватация ионной пары с
«тыла», в результате которой реакция α-фенилэтилхлорида с AgNO3

в Et2O происходит с сохранением конфигурации, рассматривалась так-
же Корнблюмом223, однако эта же реакция в CH3CN происходила с
обращением конфигурации; по-видимому, происходит конкуренция меж-
ду растворителем и N07.

Полное сохранение конфигурации наблюдалось в реакции нуклео-
фильного замещения аксиального брома в транс, г/?анс-2-бромдекалине
под действием CH3CN в присутствии AgC104 или AgBF4, приводящей
к N- (транс-, транс-2-д.екалил) ацетамиду224. Сохранение конфигурации
наблюдалось при сольволизе ментилтозилата в водном спирте (58%)
и трифторэтаноле (83 % ) 2 2 5 .

Значительное сохранение конфигурации в реакции ацетолиза и фор-
молиза анты-2,3-дидейтеро-7-норборнилброзилата (на 90 и 95% соответ-
ственно) автор2 2 6·2 2 7 склонен объяснить фронтальным «захлопыванием»
образующейся ионной пары. Отсутствие влияния добавок NaOAc на
стереохимический результат ацетолиза явно свидетельствует в пользу
механизма SN\. С другой стороны, меньший процент сохранения конфи-
гурации при формолизе может служить некоторым аргументом в пользу
того, что сохранение конфигурации не является следствием проявления
синартезиса и образования неклассического карбониевого иона. Таким
образом, возникает еще одна возможность, требующая участия в реак-
ции сольватно-разделенной ионной пары и обмена в ней аниона без из-
менения конфигурации. Иными словами, следует предположить, что ата-
ка на контактную ионную пару, не сольватированную по атому углерода,
происходит с «тыла»', а выменивание аниона в сольватно-разделенной
паре осуществляется с фронтальной стороны. Однако нельзя полностью
исключить возможность объяснения сохранения конфигурации за счет
«неклассического» участия 228.

Таким образом, пространственная ориентация в реакциях SNl зна-
чительно менее однозначна, чем в реакциях SN2 и ее объяснение воз-
можно только с привлечением концепции ионных пар.

4. Изомеризация анионного фрагмента

Мощным методом доказательства существования ионных пар раз-
личного типа в сольволитических реакциях является метод, предложен-
ный Герингом229 и заключающийся в одновременном изучении скоростей
рандомизации (эквилибрирования), рацемизации и сольволиза оптиче-
ски активных и меченных по кислороду (карбонильному или эфирному)
алкил-р-нитробензоатов, например209:

N&H-OCC,H4NOa-p + Н2О -» \CH-OH + p-NO2C6H4COOH
р-С\С<р/ || р-С1СвН/

18Г)
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Анализ исходного продукта на различных глубинах превращения по-
казал, что в возвращенном продукте наблюдается «перемешивание»
(эквилибрирование) изотопной метки и потеря стереохимической кон-
фигурации; однако эти процессы идут с различными скоростями, причем
для р-хлорбензгидрил-р-нитробензоата в 80%- и 90%-ном водном аце-
тоне скорость рандомизации превышает скорость сольволитической
реакции (keq>kt)

ROCOAr — - - * ROH + ArCOOH; (1)

Ka
ROC18OAr -— Ri8OCl8OAr; (2)

(d или i)-ROCOAr — * d, /—ROCOAr. (3)

Несовпадение kt с keq и k4ac означает, что процессы (2) и (3) проис-
ходят не только в результате возврата ионов в исходное соединение с
ковалентной связью, но и в результате возврата других ионных интер-
медиатов. Из факта же различия величин keq и k4ac следует существова-
ние по крайней мере двух таких ионных интермедиатов. Обычно
keq>k4ac, например, для рассмотренной системы keqlk4ac в 80%- и

"90%-ном ацетоне соответственно равно 1,5 и 2,5. Это позволяет пред-
положить, что эквилибрирование метки происходит уже на стадии воз-
врата контактной ионной лары, а рацемизация на стадии возврата соль-
ватно-разделенной ионной пары (анионный фрагмент «скользит» по
поверхности катиона), сольволитическая же реакция происходит с уча-
стием сольватно-разделенных ионных пар и свободных ионов.

,-ас6н4 Х " < \
сн е; c-ceH,NO2-,. —'

P h / e ч о ^

я-с1с6н4 Ч. " o v

СН® Θ) C-C6H4NO2-?

Из полученных данных следует, что в 90%-ном ацетоне 72% обра-
зующихся ионных пар вновь превращаются в исходное ковалентное со-
единение, причем 81% возврата происходит с сохранением конфигура-
ции. Следует учесть, что величина keg, возможно, отражает не весь воз-
врат ионных пар (если предположить, что часть его происходит без
рандомизации), а является его нижним пределом.

Доказательство того, что возврат внутренней ионной пары может
осуществляться с полным сохранением стереохимической конфигурации,
так же как доказательство существования ионных пар различного типа,
были получены при изучении влияния на kt, keq и k4ac добавок азида
натрия210. Оказалось, что в присутствии NaN3 увеличивается скорость
сольволиза, несколько уменьшается скорость рандомизации и совершен-
но подавляется рацемизация исходного продукта. Этот результат согла-
суется с представлением, что NaN3 является нуклеофильной «ловушкой»
внешних ионных пар. В результате обмена анионами между ионными
парами R+||X- + Na + | |N3^R + | |N7 + Na+ | |X- образуется более реакцион-
носпособная ионная пара, что почти полностью подавляет возврат из
сольватно-разделенной ионной пары. Отсюда следует, что именно воз-
врат этой ионной пары приводит к потере стереохимической конфигура-
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ции (табл. 6). Некоторое изменение под влиянием NaN3 значения keq

означает, что определенная часть рандомизации обязана возврату рых-
лых ионных пар. Доля возврата возрастает при увеличении стабильности
ионной пары. Так, уже для бензгидрил-р-нитробензоата в 90%-ном аце-
тоне ( ί= 118,6°) &, = 6,4·10-3 час~\ а /eeg=18,7-10~3 час1.

ТАБЛИЦА 6

Значения kt, keq и k4ac при гидролизе р-хлорбензгидрил-и-нит-
робензоата в 80%-ном ацетоне при 99,0° в присутствии

и в отсутствие азида натрия
р-С1С„Н4

/Сн-ососвн4ыо2-р (80%-ный ацетон, 99,6°)
P I /

( с о ~ 2,8·10-2Λί)

ftlO·, час-1

ячас

Значения констант
в отсутствие NaNt

4,41
6,5
2,76

Значения констант в
присутствии Ο,Η Μ NaN s

30,0
5,9
0,0

ТАБЛИЦА 7

Влияние водности ацетона на долю и стереохимию возврата
р-С1С„Н

4
 р-СН,ОС,Н.

7-CH-O-COC
a
H

4
NO

2
-p (99,6°) 7

C H
-°

c o c
«

H
i-NO

s
-p

РГ ΟΗ
3

Χ

90%-ный ацетон 80%-ный ацеТон 90%-ный ацетон 70%-ный ацетон

kt (отн.)

ν**
1
2,1
0,38

9
1,46
0,43

1
2,59

0,45

45
0,57
0,71

Увеличение содержания воды в бинарной смеси ацетон — вода ска-
зывается как на доле возврата (kejkt), так и на стереохимии возврата
{Кас1Кчу

з<>. Скорость сольволиза р-хлорбензгидрил- и а-р-анизилэтил-
/0-нитробензоатов увеличивается, а отношение kejkt уменьшается
(в 70%-ном ацетоне для а-/?-анизилэтил-/?-нитробензоата оно становит-
ся даже меньше 1) и возрастает k4aclkeq (табл. 7). Это наблюдение хо-
рошо согласуется с рассматриваемой концепцией, предполагающей сдвиг
равновесия в более ионизирующей среде от контактных к рыхлым ион-
ным парам.

Доля возврата из сольватно-разделенной ионной пары зависит от ее
устойчивости. В общем случае более устойчивый ионный интермедиат
менее подвержен нуклеофильной атаке, и поэтому оказывается более ра-
цемизованным. Другой возможный вариант объяснения состоит в том,
что в такой ионной паре уменьшаются силы взаимодействия между
ионными фрагментами, и это приводит к увеличению доли возврата с
рацемизацией. Примером может служить сравнение данных, полученных
при сольволизе а-фенилэтил-/?-нитробензоата в 70%-ном ацетоне, где не
наблюдалось заметной рацемизации, и ос-р-анизилэтил-р-нитробензоата.
реакционная способность которого ~ в 30 000 раз больше, и возврат
^происходит на 71% с рацемизацией230. Таким образом, увеличение ста-
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бильности R+||X~ приводит, с одной стороны, к росту константы иони-
зации, а с другой — к увеличению доли возврата kK/ks (где kN — кон-
станта скорости реакции с собственным противоионом, kB — константа .
скорости реакции ионной пары с растворителем). '

Увеличение вклада стадии возврата сольватно-разделенной пары»
при одновременном увеличении скорости сольволиза в АсОН при пере-
ходе от α-фенилэтил- к а-р-анизилзтилтозилату, тестом на которое слу-
жило возрастание солевого эффекта от нормального к специальному
^ext/&?=l и 3,2 соответственно), отмечалось Уинстейном с сотр.162.

Аналогичная закономерность наблюдалась для р-замещенных бенз-
гидрил-р-нитробензоатов231: kt резко увеличивалось в ряду€1<Н<СН 3 <
<СН 3О (р=—3,9 в согласии с механизмом SN\), при этом kejkt изме-
нялось незначительно, a k4ajkeq увеличивалось с ростом ku т. е. с увели-
чением стабильности ионного интермедиата.

Итак, распознавание типа частицы, через которую происходит воз-
врат к исходному соединению, осуществляется на основании ряда дан-
ных, связанных с определением влияния общего иона, солевого эффек-
та, величин keq и k4ac. Так, на основании отсутствия депрессии общим
ионом сделан вывод, что в случае а-/ьанизилэтилтозилата возврат осу-
ществляется только из сольватно-разделенных ионных пар, в то время
как в случае а-(2,4-диметоксифенил) — этилтозилата в нем принимают
участие и свободные ионы188. Наличие специального солевого эффекта и
большая селективность, наблюдаемые при сольволизе грео-З-р-анизил-
2-бутилтозилата в сравнении с З-фенил-2-бутилтозилатом, соответствуют
и характеру ионных пар, участвующих в возврате: в первом случае соль-
волиз сопровождается возвратом на 83% рыхлых и на 38% контактных
ионных пар, а во втором возврат происходит только из контактных ион-
ных пар, хотя общее количество возврата (78%) одинаково в обоих * ·
случаях188. Переход от 2-фенилпропил- к 2-р-анизилпропил-1-тозилату
также приводит к увеличению доли возврата из рыхлых ионных пар 232.

Более сложным вопросом является влияние добавок NaN3 на соот-
ношение keqlkt и k4ac/keq. Так, в реакциях а-р-анизилэтил-230 и /?-метил-
бензгидрил-р-нитробензоатов 231 в отличие от рассмотренной выше реак-
ции р-хлорбензгидрил-р-нитробензоата, добавка NaN3 или Bu4NNs при-
водит не только к увеличению ku но и к значительному снижению доли
возврата (keq/kt), однако практически не изменяет стереохимию возвра-
та (k4ac/keq), что не находит простого объяснения. Возможное объясне-
ние авторы2 3 0·2 3 1 связывают с уменьшением в этих случаях сил взаимо-
действия в контактной ионной паре (за счет увеличения делокализации:
заряда в катионном фрагменте), вследствие чего появляется возмож-
ность рацемизации уже при возврате контактной ионной пары.

Метод перераспределения метки в анионном фрагменте был исполь-
зован Уинстейном с сотр.233 для доказательства существования ионных
пар в реакциях неактивированных вгор-алкилсульфонатов, таких как
2-октил- и г/?анс-4-трет-бутилциклогексилтозилаты, для которых, в со-
ответствии с механизмом Снина183, предполагается бимолекулярная
атака на контактную ионную пару. Было показано, что рандомизация
действительно происходит, причем на величину keq не влияет добавка
одноименного аниона.

ROS18O2Ar ^± R^OSu^Ar

Доля этого процесса возрастает по мере уменьшения нуклеофильности; ц
растворителя:
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Растворитель МеОН АсОН НСООН CF3COOH

. 1,1(75°) 6,5(75°) 8,1(25») 19,9(25°)

Эквилибрирование метки и потеря оптической активности в исход-
ном соединении наблюдались при разложении р-хлорбеизгидрил-8-ал-
кил (или арил) карбонатов в различных растворителях234 (механизм
Sjvi), причем соотношение констант зависело от природы растворителя.
Из полученных данных следует, что возврат ионных пар происходил
преимущественно с сохранением конфигурации (kcq>ka)

235.

р-С1С,Н4ч, / ю р-С1СаН4 ую
)СН—О—С ^ ионная пара ^ )СН—18О—Cf

Ph/ \ S R ι P h / \SR

р-С1СвН

4

р в 4

CO2 4 ) C H - S R
Ph-

Однако при аналогичной реакции RCH(CH3)OCOC1 в диоксане обмен
кислородной меткой между эфирным и карбонильным кислородами не
наблюдался236.

Приведенные выше данные по эквилибрированию кислородной мет-
ки в карбоксилат-анионе и других анионах показывают, что этот про-
цесс в основном осуществляется на стадии возврата внутренних ионных
пар.

Аналогичные данные были получены для изомеризации в системе,
содержащей другой амбидентный анион — тиоцианат. Изомеризация
оптически активного /?-хлорбензгидрилтиоцианата происходила в раз-
личных растворителях с полным сохранением конфигурации236-239:

р-С1С вН 4 ч* р-С1С„Н4

>CH-SCN -» ^ C H - N C S ,
P h x Ph/

т. е. вероятнее всего в результате возврата контактной ионной пары.
Итак, для вторичных алкил-р-нитробензоатов обычно наблюдался

значительный возврат (k.Jkt 2,2—3,2 для 90%-ного ацетона) и сущест-
венная часть возврата (от 38 до 53%, в зависимости от структуры) про-
исходила с рацемизацией. Иные закономерности были получены для
третичных алкильных систем. Так, в реакции 2-фенил-2-бутил-р-нитро-
бензоата 2 U keq<lkt(keq/kt = 0,6), хотя обе константы возрастают при пе-
реходе к третичному алкилу и только 8% возврата сопровождается
рацемизацией. Причина уменьшения возврата не ясна, хотя, возможно,
оно связано с меньшей устойчивостью третичной ионной пары в срав-
нении с вторичной из-за усиливающейся тенденции к диссоциации.
Факт же большей стереоспецифичности возврата, как предполагают
авторы работы242, связан с увеличением барьера вращения аниона вок-
руг пространственно-затрудненного катиона. Однако принципиально

Ph\ σ2"5 °\

картина остается прежней: в сольволитических реакциях третичных си-
стем принимают участие ионные пары, способные превращаться в ис-
ходное соединение.
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Возврат, о котором судили по рандомизации, наблюдался для три-
тил-/?-нитробензоата в растворе сухого ацетона242, т. е. в отсутствие
реакции. Однако данные по влиянию добавок азид-иона в этом случае
оказались противоречивыми242"244. Так, согласно Свэну с сотр.242, до- #
бавка LiN3 переводит весь эфир в Ph3CN3 и полностью ингибирует воз-
врат (keq падает до нуля), на основании чего авторы делают вывод,
что перегруппировка происходит в том же интермедиате, который за-
хватывается азид-ионом. Однако, по данным Уинстейна и сотр.243, до-
бавка Bu4NN3 не подавляет возврат, однако в 99,2%-ном ацетоне такая
добавка, не изменяя общей скорости процесса, полностью подавляла
сольволиз, т. е. kt становилась равной kN-. В отличие от Bu4NN3 добав-
ка LiN3 сильно уменьшает возврат и резко увеличивает kt (где kt=kN-J
Так как необычно сильное влияние на скорость ионизации оказывает и
перхлорат лития, предполагается, что литиевые соли в апротонных сре-
дах способны с ионными парами образовывать квадруполи, тем самым
промотируя ионизацию.

5. Изомеризация в аллильных системах

Доказательством существования в сольволитических реакциях ион-
ных пар и возвратного механизма является изомеризация в ходе реак-
ции аллильного фрагмента при использовании несимметрично замещен-
ных аллильных систем. Эти системы изучены очень подробно245"253.
Естественно, что необходимым условием для предположения о сущест-
вовании ионных пар в этих реакциях является доказательство внутри-
молекулярного характера изомеризации. Сама идея о существовании
ионных интермедиатов, отличных от свободных карбониевых ионов, че-
рез которые могут осуществляться и сольволиз, и внутримолекулярные
перегруппировки, была впервые высказана7 при изучении именно ал- \\
лильной изомеризации: было показано, что ацетолиз α,α-диметилаллил-
хлорида сопровождается его перегруппировкой в γ,γ-диметилаллилхло-
рид, причем скорость перегруппировки не изменяется (с учетом соле-
вого эффекта) при проведении реакции в присутствии хлорид-иона. При
добавлении *С1~ только небольшая часть метки входит в исходное со-
единение 25.

Таким образом, наблюдаемая изомеризация обязана возврату ион-
ной пары. Реакция цис- и транс-кротил- и α-метилаллилхлоридов с вод-
ным AgNO3 приводит к смеси изомеров (нитратов и спиртов) и проис-
ходит с сохранением геометрической конфигурации, что объясняется
достаточно высоким барьером вращения в ионном интермедиате245:

е н з Ч /Н

н α

Сольволиз а-фенил-7-метилаллил-р-нитробензоата в водных ацето-
не 2 4 8 · 2 4 7, диоксане и метаноле2 4 8·2 4 9 сопровождается его внутримолеку-
лярной изомеризации в менее реакционноспособный а-метил-у-фенилал-
лил-р-нитробензоат.

Η
I

Ph

Η

OCOCeH4NO2-p

спирты

k P h x *C / C H 3

X OCOC e H 4 NO a -p
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При применении оптически активного и меченого эфира показано 2",
что отношение констант kt: k4ac: keq (102 час-1) в 90%-ном водном аце-
тоне при 99,4° составляет 5,16:7,04:10,88, т. е. в этих условиях 65%
возврата происходило с потерей стереохимической конфигурации. С уве-
личением водности ацетона, как уже отмечалось ранее, уменьшалась
доля возврата, т. е. отношение keq/kt, однако в отличие от других алкил-
бензоатов при этом уменьшалась и доля возврата с рацемизацией
k4ac/keq (16% в 70%-ном ацетоне при 49,04°).

Сольволиз оптически активного гранс-а.у-диметилаллил-р-нитробен-
зоата в водном ацетоне также происходил с рандомизацией и рацемиза-
цией исходного продукта, так как скорость потери оптической активно-
сти ka = kt+k4ac значительно превышала скорость сольволиза (kjkt = 5,4
в 90%-ном ацетоне при 99,6° и 2,17 в 60%-ном ацетоне при 59,9°)250·251,
так что к моменту осуществления реакции на 50% исходный эфир оказы-
вался рацемизованным на 95%. Внутримолекулярный характер изоме-
ризации (рацемизации) доказан отсутствием обмена анионов с
p-NO2C6H4COOH и отсутствием влияния добавок соли на величины kt

и ka. Интересно, что keq=k4ac (в 80- и 60%-ном ацетоне), т. е. оба про-
цесса происходят через одну и ту же симметричную ионную пару (по-
видимому, контактную, так как отсутствует обмен), в которой эквива-
лентны оба кислорода и оба аллильные атомы углерода (предполага-
ется, что катионный и анионный фрагменты расположены в перпендику-
лярных плоскостях). Аналогичная зависимость наблюдалась при соль-

сн,

о/'
н

Ϊ
G6H4NO2-p

волизе г{мс-5-метил-2-циклогексенил-р-нитробензоата252. Однако при
аллильной изомеризации оптически активного гранс-5-метил-2-циклогек-
сенил-5-нитробензоата в 80%-ном ацетоне, которая также происходит
с сохранением геометрической конфигурации, скорость рандомизации
вдвое превышает скорость рацемизации253.

Таким образом, в этой системе реализуется более общая ситуация,,
когда в равновесии существуют два интермедиата: один — общий для
обоих энантиомеров, возврат которого приводит и к рацемизации, и к
рандомизации; и другой — не общий, в котором происходит только экви-
либрирование без потери стереохимической конфигурации (т. е. возврат
происходит без изменения реакционного углеродного центра). Одна-
ко причина различного поведения двух геометрических изомеров,
неясна.
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6. Перегруппировки с арильным участием

Привлечение концепции ионных пар оказалось необходимым для
объяснения результатов, связанных с арильной миграцией и стереохи-
мией сольволиза, в системах, содержащих β-арилэтильный фрагмент.
С первых же шагов исследований проблемы «неклассических» (мости-
ковых) карбониевых ионов и анхимерного содействия было продемон-
стрировано, что эта проблема тесным образом связана с проблемой
образования в этих реакциях ионных пар i 8 6 · 2 5 4 .

Если миграция арильной группы в таких системах в ходе сольволиза
происходит внутримолекулярно, т. е. не зависит от добавления общего
иона, то исследование скорости миграции можно использовать для опре-
деления доли возврата из ионных пар («неклассических»), образующих-
ся по пути с анхимерным содействием (&д). Для суждения о существо-
вании миграционного процесса можно использовать несимметрично за-
мещенную систему или, что наиболее просто, исследовать распределе-
ние изотопной метки в изотопно-меченной (по углероду или водороду)
симметричной системе:

PhCH2CH2OTs H * * c > PhCH2CH OAc

PhCH*CH2OTs H ^ c > PhCH*CH2OAc

U

По данным255, значения констант скоростей ацетолиза 2-фенилэтилтози-
лата при 90° составляют: &s = 8,92-10~7 сект1, &д = 1,18-10-6 сек~\ и кон-
станта скорости возврата ионных пар равна 8,00· 10~' сек"1, т. е. соиз-
мерима с ks.

Существует большое число работ255"270, посвященных изучению влия-
ния природы арильной группы и среды на степень распределения ра-
диоактивной метки в исходном соединении и вычислению доли процес-
са, происходящего с анхимерным содействием (&д) и без него (&s).
К сожалению, при этом не всегда изучался вопрос о природе ионного
интермедиата, из которого происходит возврат. В зависимости от струк-
туры и растворителя, возврат может происходить не только с участием
ионных пар, но и свободных ионов, эти процессы могут происходить и
одновременно271. Однако существуют работы, где доказан внутримоле-
кулярный характер возврата255. Так, показано258, что сольволиз мечен-
ного по углероду р-анизилэтилтозилата приводит к распределению мет-
ки как в продукте сольволиза, так и в исходном тозилате, причем по-
следний процесс осуществляется в результате внутримолекулярной
•перегруппировки:
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Внутримолекулярный характер перегруппировки показан в реакци-
ях ацетолиза 2-фенил-1-пропилброзилата272 и 2-р-анизил-1-пропилтози-
лата232. Отсюда следует, что участие ионных пар возможно даже в реак-
циях первичных алкильных систем при условии, что субстрат содержит
группы, способные содействовать ионизации.

Данные по трифторацетолизу 2-фенилэтилтозилата271, при котором
резко возрастает доля пути с анхимерным участием (&д/й3 = 23 000),
можно объяснить только с включением в процесс всех трех типов ион-
ных пар. Их вклад в общий возврат приведен на схеме:

R O T s ^ R ® O T s e ^ R® || ©OTs ^ R® + © O T s
15% 87% I |

п р о д у к т продукт

Аналогично для 2-р-анизилэтилтозилата258·271:

92 °/ 2 5 °/
ROTs =г= R ® O T s e — ^ R® || e O T s ^ R® + ®OTs

8% 9 5 % J2,8% I
продукт продукт

Таким образом, сольволиз систем, способных к мостиковому уча-
стию, осуществляется по двум путям, которым соответствуют две кон-
станты скорости: fes — в результате атаки растворителя на субстрат и
k& — в результате атаки арильнои группы на карбониевый центр. В слу-
чае вторичных субстратов первый процесс приводит к продукту с обра-
щением конфигурации272. Мы в этом обзоре не будем рассматривать
механизм стабилизации карбониевого центра соседними группами, так
же как не будем касаться вопросов о методах разделения наблюдаемой
константы (kt) на величины ks и kA (укажем только, что это делается
как на основании изучения процента перегруппировки и стереохимии,
так и с помощью корреляционного анализа2 7 4·2 7 5. Мы не будем также
рассматривать дискуссионного вопроса2 7 6·2 7 7 о существовании вместо
«неклассической» ионной пары двух быстро перегруппировывающихся
классических ионных пар. Для нас основным является вопрос о наличии
стадии внутримолекулярного возврата, которая свидетельствует, что
структура (VII) является интермедиатом, а не переходным состоянием
стадии диссоциации.

Важным вопросом механизма рассматриваемой реакции, особенно в
случае вторичных систем, является возможность участия ионных пар
и в стадии, происходящей без анхимерного содействия. Можно предпо-
лагать, что в этих системах оба процесса (атака растворителем и
арильнои группой) происходят не с участием ковалентного соединения,
а с участием тесной ионной пары, образующейся в предравновесной
стадии27Т. Возможно также, что по пути ks происходит образование
ионной пары, отличной от (VII) (например, ионной пары, нуклеофильно
сольватированной растворителем), из которой также может происхо-
дить возврат (последнее обстоятельство важно, так как возврат из (VII)
уменьшает долю процесса, идущего с анхимерным содействием). Важ-
но только учесть, что пути ks и &д не пересекаются255, т. е. образующие-
ся ионные пары (VIII) не могут (например, из-за препятствующей
арильнои атаке сольватации молекулой растворителя) переходить в
ионные пары (VII) (в противном случае нельзя было бы объяснить
хорошего совпадения кинетических данных с данными, полученными на
основании анализа состава продуктов).

8 Успехи химии, № 12
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Однако использование азид-иона в качестве теста на механизм реакции
показывает, что в случае первичных и вторичных систем возможна пря-
мая атака SN2 азид-ионом на ковалентное соединение270·278.

Хотя доказательства существования ионных пар получены в основ-
ном на примере участия арильной группы, вполне естественно ожидать,
что аналогичным образом происходят процессы по пути kA с участием
других β-донорных группировок. Примером может служить перегруп-
пировка при сольволизе эритро- и rpeo-изомеров 5-хлор-2-гексилтозила-
та2 7 9, в которой наблюдалось значительное сохранение конфигурации,
что видно из следующих данных:

CF3COOH HCOOH АсОН
эритро- 92 61 29
трео- 89 49 22

Как видно, доля сохранения конфигурации растет с увеличением иони- *
зирующей способности растворителя и уменьшением его нуклеофильно-
сти. Особенно естественно привлечение концепции ионных пар для объ-
яснения перегруппировок в первичных системах, где трудно ожидать
образования свободных карбониевых ионов.

7. Другие случаи изомеризации катионного фрагмента

Кроме приводимых случаев аллильной изомеризации и миграции
арильной группы, существуют другие примеры перегруппировок в ка-
тионном фрагменте, которые также легко объясняются с привлечением
представлений об образовании ионных интермедиатов.

Недавно обнаружена любопытная изомеризация катионного фраг-
мента ионной пары, изменяющая природу образующегося продукта280.
Показано, что при сольволизе о-нитробензгидрилбромида в 90%-ном
водном ацетоне при подкислении раствора НВг образуется 5-бром-З-
фенил-2,1-бензизоксазол вместо о-нитрозобензофенона, который являет-
ся продуктом реакции в нейтральном растворе. Предполагается, что
обе реакции происходят через одну и ту же ионную пару, образующую-
ся в результате внутримолекулярной атаки нитрогруппы. Отщепление
протона от этой ионной пары (под действием воды или добавленного
CHsCOONa) приводит к кетону, а ее необратимый возврат в кислой
среде сопровождается вхождением брома в кольцо и приводит к про-
дукту, превращающемуся в производное изоксазола:
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Представления об образовании ионных пар (по-видимому, контакт-
ного типа) объясняют изомеризацию, наблюдаемую при сольволизе цик-
лопропилкарбинил-281 и циклобутиляренсульфонатов "° "°"

р1 7 9 · 2 8 2

9OTs —L-*·
HOS + HOTs

xOTs

Выше было показано на основании эффекта уходящей группы и
данных по конкурирующим реакциям, что реакция не происходит с об-
разованием свободных ионов, причем соотношение kr/ks зависит от при-
роды уходящей группы "", как это должно быть в реакциях с участием
ионной пары.

VI. КОНТАКТНЫЕ ИОННЫЕ ПАРЫ В РЕАКЦИЯХ S N2

Итак, концепция ионных пар позволила объяснить соотношение в
скоростях сольволиза, рацемизации, рандомизации, перегруппировок, а
также специальный солевой эффект в сольволитических реакциях типа
SNl. В последнее время представления об образовании ионных интер-
медиатов стали рассматриваться и в реакциях типа 5^2 вторичных
глкильных систем. Начиная с 1965 г., в литературе обсуждается воз-
можность осуществления реакции бимолекулярного нуклеофильного за-
мещения в результате нуклеофильной атаки не на ковалентное соеди-
нение, а на контактную ионную пару, образующуюся в предравновес-
ной стадии:

RX ^ R + x- м е ; ; · ! R N + х -

Исходя из того, что реакционная способность вторичных соединений
должна быть меньше, чем у первичных по механизму SN2 и третичных
по механизму SNl, Снин предположил 183· 283~294, что атака нуклеофила
в этом случае может происходить на контактную ионную пару. Осно-
ванием для такого заключения послужили два факта: 1) образование
полностью инвертированного спирта при гидролизе оптически активного
2-октилметансульфоната283; 2) несовпадение стадии, определяющей ско-
рость реакции, и стадии, определяющей соотношение образующихся
продуктов (ROH и RN3) при сольволизе этого соединения в 25- и
30%-ном водном диоксане в присутствии азида натрия284.

8*
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Действительно, в классическом механизме SNl скорость реакции не
изменяется при добавлении NaN3, так как атака происходит после ста-
дии, определяющей скорость реакции. В этом случае добавка азид-иона
может служить также тестом на SNl-характер сольволитического про-
цесса 8\ так как, если даже с сильным нуклеофилом реакция не осу-
ществляется по механизму SN2, то с менее сильным нуклеофилом (Н2О,
ROH) это тем более не должно происходить. В классическом механиз-
ме SN2 скорость должна возрастать пропорционально с ростом концен-
трации NaN3

ROS
RX

Для вторичных октилсульфонатов наблюдался промежуточный слу-
чай: скорость реакции, измеренная по расходу исходного соединения,
возрастает с увеличением концентрации NaN3, но в значительно мень-
шей степени, чем это должно было быть при процессе SN2 (порядок по
[N~3 ] между 0 и 1). Однако селективность по отношению к Доказыва-
ется ~ в 1000 раз больше, чем для реакции SNl. Таким образом, ис-
пользовав добавку Ns, Снин и сотр. получили убедительный аргумент в
пользу осуществления реакции SN2 в результате атаки нуклеофила на
контактную ионную пару, что объясняло как стереохимический резуль-
тат— инверсию, так и наблюдаемые данные по кинетике и распределе-
нию продуктов. Применение принципа стационарности к схеме

R X

приводит к уравнению

набл.

ζ • ROS
быстро / < \

ik R+χ- / медленно Λ »

из которого видно, что величина йнабл. сложным образом зависит от ku

k-u ks и &N. Отношение k^lka определяется из соотношения продуктов,

л х т х т * N I N 31 fRN,]
образующихся при различных концентрациях N a N 3 : — = — - — 2 L - .

ftg [ROH]

Такой подход снимает возражения, связанные с различной реакционной
способностью NaN3 при различных концентрациях. Естественно, что

определение FN из графика - — — = f ([N3 ]) возможно в том слу-
[ROH]

чае, если эта зависимость описывается прямой линией. Однако в боль-
шом интервале изменений концентрации азида натрия эта закономер-
ность не должна выполняться, если учесть, что диссоциация NaN3 в этих
растворах может быть не полной. Действительно, по данным Ричи'",
график этой зависимости для реакции р, р'-диметоксибензгидрилмези-
тоата в метаноле не линеен. В таком случае наблюдаемый дробный по-
рядок по азид-иону может быть следствием его неполной диссоциации.
Однако этот вопрос в работах Снина и сотр. не рассматривался. Отме-
тим, что отклонения от первого порядка по бромид-иону, наблюдаемые
при изучении скорости рацемизации α-фенилэтилбромида в ацетоне, ь
оказались следствием существования LiBr в этом растворителе не толь-
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ко в виде ионов, но и в виде ионных пар 3 3 , хотя легко могли быть отне-
сены за счет реализации ион-парного механизма SN2.

Отношение ΚΆίπ, к константе сольволитической реакции (kNA) В от-
сутствие NaN3 с учетом возможного небольшого положительного соле-
вого эффекта (предполагается, что этот эффект соответствует эффекту,
вызываемому солями типа LiC104, NaNO3 и NaBr) дается уравнением

m =

=k°uA(l+b- [NaN,]).

Крайними случаями этого уравнения являются механизмы SN2 (при
х->оо) и SNl (при х-*-0). При промежуточных значениях χ зависимость
а̂абл./̂ NA выражается кривой, изображенной на рис. 3. Эксперименталь-

но наблюдаемое значение константы для 2-октилмезилата совпадает с
рассчитанным по уравнению при χ = 2,4 для 25%-ного и л; = 2,59 для
30%-ного диоксана в предположении, что 6 = 1,08 и 1,04 соответствен-
но 2 8 7. Однако Шлейером и сотр.2 9 5 показано, что значения kBa6lI,, полу-

Рис. 3. Зависимость йнабл/^NA ОТ
[NaN3] для реакции 2-октилмезилата с
азид-ионом и водой в 25%-ном водном
диоксане при х = 2,40 (/); кривая по-
строена на основании эксперименталь-
ного значения /2N/£S = 8,22. 2—z=°o
(механизм SN2); 3 — х=0 (механизм

S 1 )Л я 1 } О 0,1 0,2{Шг],М

ченные при различных концентрациях, могут описываться уравнением
для реакции типа SN2 (т. е. наблюдаемые константы могут быть приве-
дены в соответствии с данными по распределению продуктов), если
принять, что NaN3 оказывает отрицательный солевой эффект (Ь = —0,3
для 25- и —1,0 для 30%-ного диоксана). В таком случае график зави-
симости· £Hae.T./̂ NA = f ([NaN3]) будет представлять прямую линию, соот-
ветствующую механизму SN2. Однако отметим, что значения Ь для близ-
ких сред должны быть при этом весьма различны. Кроме того, Шлейе-
ром и сотр.295 показано, что в 80%-ном водном этаноле реакция
2-октилброзилата и 2-пропилтозилата с азид-ионом является обычным
процессом типа SN2, при котором стадия, определяющая скорость, со-
впадает со стадией, определяющей состав продуктов.

Разработанный прием был применен Снином и сотр. к различным
системам; например, для реакции р-метоксибензилхлорида с Н2О и N~
в 70%-ном водном диоксане и реакции бензоилхлорида с о-нитроанили-
ном и Н2О в 50%-ном водном ацетоне2 8 8. В предположении положитель-
ного солевого эффекта удается согласовать расчетные величины
н̂абл./̂ NA с наблюдаемыми при х = 1,98 (т из опыта—21,6) в первом слу-

чае и х= 1,1 (т из опыта = 4,42) — во втором.
Реакция SN2 с нуклеофильной атакой на контактную ионную пару

предполагается Снином и сотр. в реакциях α-арилэтилгалогенидов в эта-
ноле2 8 9 и сульфониевых солей2 9 0. Предлагаемая схема объясняет также
результаты, наблюдаемые в аллильных системах2 9 2-2 9 4. При проведении
сольволиза α,γ-диметилаллилхлорида в абсолютном этаноле в присут-
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ствии азид- или тиоцианат-ионов значение x = k-Jks = 4,0 для обоих
ионов2β1, что, по мнению авторов, подтверждает предлагаемую схему,
которая в общем виде может быть записана следующим образом:

где kr — константа скорости аллильной изомеризации.
Сходной точки зрения придерживаются Стрейгвизер с сотр.296. Было

показано297, что ацетолиз 2-октилтозилата происходит с инверсией, но
сопровождается рацемизацией исходного соединения, причем скорость
рацемизации возрастает в присутствии тозилата лития296. По мнению
Стрейтвизера, сольволиз и замещение не являются независимыми про-
цессами, а осуществляются через один и тот же ионный интермедиат,
через который также происходит наблюдаемая в небольшой степени
перегруппировка:

ROTs =^ R+OTs- ^ R'+OTs- ^= R'OTs
\ /

продукты сольволиза ^

Наблюдаемое влияние добавок LiC104 на скорость сольволиза, рацеми-
зации и перегруппировки авторы рассматривают как «захват» ионной
пары, аналогичный производимому азид-ионом. Таким образом, в реак-
циях вторичных неактивированных систем в отличие от концепции Уин-
стейна, используемой для описания процессов SN\, все события (обмен
с анионом, возврат, сольволиз) происходят с участием контактных ион-
ных пар, которые в схеме Уинстейна не принимали участия в химиче-
ском «захвате». Существенно также, что не образование этих ионных
пар, а их дальнейшее превращение является лимитирующей стадией
процесса. Объяснение этих различий связано с тем, что нуклеофильная
атака на вторичную ионную пару является более благоприятным про-
цессом, чем ее дальнейшая ионизация и диссоциация.

Если вспомнить различные вторичные системы, для которых исполь-
зовалась схема Уинстейна, то, естественно, возникает множество вопро-
сов, на которые трудно дать однозначный ответ. Например, следует
признать, что все процессы, идущие с участием сольватно-разделенных
ионных пар, образующихся в лимитирующей стадии, должны происхо-
дить с большей скоростью, чем все процессы, описываемые ион-парным
6\2-механизмом, иначе невозможно объяснить, почему они не происхо-
дят в результате атаки контактной ионной пары. К сожалению, сопо-
ставление скоростей различных процессов в одинаковых условиях не
проводилось.

В том же 1965 году было показано, что реакция 2-октилбромида с
нитратом серебра в ацетонитриле, приводящая к олефину и алкилнит-
рату, проходит с обращением стереохимической конфигурации (оптиче-
ская чистота алкилнитрата составляла 87%)2 9 8. Аналогичная закономер- ^
ность наблюдалась в реакции 2-октилбромида с перхлоратом серебра
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в бензоле: образование алкилперхлората происходило на 80% с обра-
щением конфигурации229. Авторы считают, что медленная стадия реак-
ции состоит в атаке нуклеофила на комплекс RX...Ag+, и в традициях
английской школы предполагают участие в реакции квадруполя
[N"...R+...X~...Agf]. Такая структура была ранее предложена в качестве
переходного состояния300. По такому же механизму (а не по механиз-
му Sw lAg+ i) осуществляется реакция аллилгалогенидов с AgNO3 или
AgC104 в ацетонитриле301. Однако легко видеть, что различия с трак-
товкой Снина здесь в основном терминологические302·303.

С учетом возможности участия в реакциях нуклеофильного замеще-
ния ионных пар контактного типа схема Уинстейна должна быть рас-
ширена и в модифицированном виде должна включать различные ме-
ханизмы, которые в принципе могут быть реализованы при изменении
соотношения скоростей различных стадий.

RX — _i R+X- ;==; R+ υ Х- ~ ϊ R+ + χ-
(I) ft_, (И) к-г (Ш) fc_3 (IV)

^ j j I
ROS ROS ROS ROS

Участие ионных пар в реакциях вторичных систем, в том числе ион-
парный механизм Снина (5^2), следует из работ Шайнера с сотр.304"310,
Ε которых предпринята попытка определения механизма сольватических
реакций на основании величин а- и β-дейтероэффектов. Показано, на-
пример, что α-ύί-эффект в реакциях 2-пропилброзилата 305, З-пентенил-2-
ироизводных30в, циклопентилброзилата 31° и т. д. близок к 1 в водном
этаноле, но увеличивается до 1,22—1,23 по мере увеличения ионизирую-
щей способности растворителя и уменьшения его нуклеофильности (вы-
соководный этанол, водный трифторэтанол, карбоновые кислоты). Авто-
ры рассматривают это как доказательство изменения механизма от
«чисто» SN2 до S/y 1 или SN2, а в пределе Sjvl; классификация дана в
соответствии со схемой, где разграничены механизмы образования в
лимитирующей стадии контактной ионной пары (Sl

N, 1) и ее превращение
в сольватно-разделенную ионную пару ( S # l ) . Предполагается, что
a-d-изотопный эффект, равный 1,00—1,05, характеризует механизм Sl

N2
-—-1,15 — механизмы SNl или SN2 и 1,22 — механизм 5'лЛ (превращение
контактной ионной пары в сольватно-разделенную). Известно, что боль-
шой изотопный эффект характеризует образование карбониевого
иона311. Однако наличие определенного влияния Ns на скорость реак-
ции вторичных систем должно, по-видимому, свидетельствовать в поль-
зу механизма 5^2, а не SNI.

Однако нам кажется преждевременным рассматривать критерий,
предложенный Шайнером с сотр. как абсолютно надежный, и пытаться
идентифицировать механизмы реакций на основании относительно не-
больших (1,08—1,22) a-d-изотопных эффектов. Для осторожного отно-
шения к этому критерию существуют и другие основания. Так, было
показано312, что наблюдаемый изотопный эффект по-разному проявля-
ется для различных стадий и должен зависеть от соотношения скоро-

стей превращения ионной пары и стадии возврата, так как—g- / —jj-
-ι / *-ι

Кроме того, этот подход неприменим к реакциям, в которых наряду с
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замещением происходят элиминирование и перегруппировки313, а эти
конкурирующие процессы обычно сопровождают реакции во вторичных
системах314. Наконец, отнесение максимального изотопного эффекта к
реакции S " l было проведено на основании данных305, оказавшихся не-
корректными 315.

В работах Бордвелла с сотр.316-319 приводятся аргументы в пользу
участия ионных пар при 5дг2-нуклеофильном замещении у третичного
атома углерода в приводимой ниже аллильной системе:

p-MeC eH 4SO 2 4 Η Ν-

/ \ R N

Х = С1, Вг, мезилат; N = OMe, ОН, N3, SCN; S = C(NH2)2.

При первом порядке по нуклеофилу (что отвергает механизм SNl)
зависимость скорости реакции от солевого эффекта, полярности среды,
природы нуклеофила и уходящей группы, β-βί-эффекта оказывается иной,
чем для системы с первичным атомом углерода. Предполагается, что
введение группы ArSO2 ингибирует диссоциацию ионных пар, но не их
образование. В поддержку механизма Снина недавно высказались авто-
ры320, проанализировавшие кинетический изотопный эффект хлора
(35&/37&) в реакции р-метоксибензилхлорида с азидом натрия в 70%-ном
водном ацетоне. В реакции наблюдалось изменение изотопного эффекта
с изменением концентрации нуклеофила, что, по мнению авторов, не дол-
жно происходить в условиях процессов Sjyl и SN2, но согласуется с ион-
парным 5^2-механизмом.

Была сделана попытка перенесения механизма Снина на реакции
неактивированных первичных систем321·322. Отметим, что ранее в реак-
циях А1КХ с солями серебра AgY (У = ЫОз, OTs и т. д.) предполага- ^ \
лось, что в медленной стадии образуется ионная пара Y~R+ 3 2 3 · 3 2 4 , ко-
торая в быстрой стадии рекомбинирует или образует олефин. Скотт32i

при рассмотрении данных по реакционной способности и селективности
метилгалогенидов с различными нуклеофилами в воде пришел к выводу,
что эти данные лучше всего объясняются с позиции участия в медлен-
ной стадии реакции контактных ионных пар (т. е. квабл, = Kvk2). Однако
такое предположение вызывает серьезные возражения325. Расчет свобод-
ной энергии, требуемой на образование первичной ионной пары в воде,,
проведенный Абрахамом326, делает такое предположение маловероят-
ным, хотя и допускает возможность образования ионных пар в случае
г-РгВг и ^-BuBr. Отметим также, что a-ci-изотопный эффект в первич-
ных системах близок к единице313.

Против участия контактных ионных пар в механизме SN2 и попытки
создания «унифицированного» механизма нуклеофильного замещения
выступил Констэм с сотрудниками327·328. Наблюдаемые закономерности
во влиянии NaN3 на гидролиз вгор-октилметансульфонатов, по их мне-
нию, могут быть описаны в рамках классических механизмов в погра-
ничной области, в которой реакция одновременно осуществляется по>
механизмам 5^1 и SN2*. Этими же авторами показано328, что гидролиз
пара-замещенных бензилхлоридов (Х=СН 3 О, PhO) и бензгидрилхло-
рида происходит по механизму SNl, и добавка NaN3 в этом случае ока-
зывает лишь незначительное влияние, обязанное солевому эффекту, од-
нако при Х = Н , NO2 механизм изменяется на SN2 и скорость исчезно-
вения исходного соединения значительно возрастает при добавлении
NaN3.

* Однако в изученных ими случаях возможность образования свободного карбо- | |
ниевого иона (по пути Sj? 1) представляется сомнительной.
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Влияние добавки NaN3 (0,05 Λί) на гидролиз /7-ХС6Н4СН2С1 показано
ниже:

X MeO PhO NO2 Ph2CHCl

1,74 20 5430 1,14

Этой же точки ззрения придерживается автор 32Э, изучивший реакции
α-фенилэтилбромида с этилатами калия и натрия в спирте. По его мне-
нию, результаты лучше описываются конкуренцией механизмов El, E1,.
Sjyl и SN2 с участием ковалентного соединения, чем ион-парным SN2-
механизмом Снина.

0,1 0,2 0,3
Г Να Nj];(/ , моль/л

0,1 О,Ζ 0,3
^а^- ,шль[л

Рис. Α. α — Зависимость отношения выхода продуктов
реакции 2-октилмезилата с NaN3 и водой в 30%-ном
водном диоксане от концентрации NaN3 и активности
N3~ (2). б — Зависимость &Η86Π/£ΝΑ той же реакции

от концентрации NaN3 (/) и активности N3~ (2)

Анализ изотопных эффектов углерода (lzk/uk *) и α-водорода
(ka/kv) привел авторов330 к выводу, что гидролиз бензил- и р-метилбен-
зилхлорида в присутствии NaN3 осуществляется как классический про-
цесс SN2, а соответствующая реакция 2-октилброзилата описывается
конкуренцией процессов SN2 и SNl с преобладанием первого.

Таким образом ион-парный 5^2-механизм, предложенный Снином,
имеет как сторонников, так и противников, и может в настоящее вре-
мя рассматриваться только как дискуссионный331. Недавно были полу-
чены, с нашей точки зрения, весьма существенные данные, ставящие под
вопрос существование этого механизма.

Как уже говорилось, основным аргументом в пользу ион-парного
5№2-механизма наряду с обращением конфигурации в конечном про-
дукте является дробный порядок по азиду натрия. Однако уже упоми-
налось, что наблюдаемый результат может быть связан с существова-
нием NaN3 не только в виде свободных ионов, но и в форме ионных пар.

Автор332 считает, что наблюдаемый результат связан с использова-

нием в кинетических уравнениях концентраций азида натрия вместо ак-

тивности. Он показал, что нелинейные зависимости = f ([N3]) в

реакции 2-октилмезилата в 25- и 30%-ном водном диоксане спрямляют-
ся при использовании вместо концентрации NaN3 активности N3.

Однако углы наклона зависимостей [RN3]/[ROH] = f (а _) и km6jI/k^A —

= f (a ) для обеих сред не совпадают (влияние добавки NaN3 на
N 3

скорость меньше, чем на выход продукта, рис. 4), т. е. определенное

* Теория предсказывает значительный изотопный эффект углерода в процессе
и малый в процессе SNl и обратное поведение изотопного эффекта ос-водорода ш .



2242 И. П. Белецкая

различие в стадиях, определяющих скорость и образование продуктов,
действительно существует. Однако это различие автор320 относит за счет
осуществления сольволиза по промежуточному (border — line) меха-
низму * 3 3 3.

* *
*

В настоящем обзоре мы рассматривали участие ионных пар только
в реакциях SN, хотя отмечали, что в случае вторичных систем они часто
сопровождаются процессами элиминирования.

В третичных системах процесс элиминирования может стать доми-
нирующим, поэтому такие системы мы почти не рассматривали. Меж-
ду тем в этих случаях также существуют четкие доказательства, что
наряду с карбониевыми ионами в реакции могут принимать участие ион-
ные пары. Так, Уинстейном с сотр.335 было показано, что при сольволи-
зе t-BuX в воде олефин образуется в небольшом количестве, прибли-
зительно одинаковом для всех X, но в менее диссоциирующем раство-
рителе— этаноле — доля процесса элиминирования резко возрастает и
существенно изменяется в ряду X ( S M e 2 < ! l < B r < C l ) . Увеличение вы-
хода олефина при сольволизе трет-бутилэтилметилсульфониевых солей
в EtOH и АсОН происходило при переходе от перхлората к бромиду336.
Все эти данные были интерпретированы с точки зрения концепции ион-
ных пар

t-BnX =г= t-Bu+X-

—-» t-BuN

олефин

Наконец, мы только упоминали об участии ионных пар в реакциях у
5/?2-гибридизованного атома углерода, хотя в настоящее время изучение
сольволитических реакций «винил-катиона» представляют все большее
число доказательств участия ионных пар и в этих реакциях337.

Известно, что теоретические основы органической химии, сформули-
рованные впервые Ингольдом и его школой, базировались в основном
на изучении закономерностей нуклеофильного замещения в алифатиче-
ском ряду, а затем переносились с дополнениями на другие типы заме-
щения. Был период, когда казалось, что эта область, ставшая классиче-
ской, почти себя исчерпала. Это сказалось в изменении количества ра-
бот, посвященных теории нуклеофильного замещения, и в возросшем
интересе к другим типам реакций, которые обнаружили интересные ν
новые закономерности. Однако, как уже неоднократно бывало, новые
идеи и новый уровень исследований обнаружили, что привычные пред-
ставления, в данном случае представления о механизмах SN2 и SN\ яв-
но недостаточны. Как бы ни сложилась судьба ион-парного Sj^-Mexa-
низма, вокруг которого сейчас ведутся горячие споры, совершенно оче-
видно, что вся область нуклеофильного замещения переживает новый
этап развития и это прежде всего связано с пристальным вниманием
исследователей к роли ионных интермедиатов различного типа. Новые
идеи привели к новой терминологии, авторы работ по изучению меха-
низмов сольволитических реакций предпочитают говорить о нуклеофиль-
ном участии растворителя в реакции, которое в зависимости от природы
субстрата и растворителя проявляется в большей или меньшей степени

* Отметим, что в свое время широко дискутировался вопрос о природе этого ме-
ханизма. Известны случаи, когда сумма конкурирующих механизмов Swl и SN2 не
способна описать поведение, характерное для «промежуточной» области 334.
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и может вообще отсутствовать, а не о механизмах SN2 или SNl313. Оцен-
ка нуклеофильного участия растворителя в сольволизе ряда вторичных
систем по отношению к трифторуксуснои кислоте, участие которой при-
равнено к нулю, проведена в3 3 8. Тот же подход в принципе может быть
распространен на другие реакции нуклеофильного замещения. Однако
новая терминология не должна затушевывать основного вопроса, свя-
занного с выяснением природы частиц, принимающих участие в элемен-
тарных стадиях.
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